SDSC TR-1999-1

Evaluation of a
Multithreaded Architecture
for Defense Applications

Wayne Pfeiffer, Larry Carter, Allan Snavely,
Robert Leary, and Amit Majumdar

San Diego Supercomputer Center
University of California, San Diego

Sharon Brunett
California Institute of Technology

John Feo, Brian Koblenz, and L.G. Stern
Tera Computer

Joseph W. Manke
Boeing

Timothy P. Boggess
Sanders/Lockheed Martin

FinAL RerPORT TO DARPA
September 1999

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited rl_'_E._IJ'J_II ; 1 999 1 0 1 3 1 09

SAN DIEGO SUPERCOMPUTER CENTER

TECHNICAL REPORT

chED 4
pTIC QuaLTTY m




Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average one hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing the burden to Washington Headquarters Services. Directorate for Informtion Operatins and Reports, 1215 Jefferson
Davis Highway, Sulte 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

9/30/99 Final Technical Report (1 July 97-30 June 99)
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Evaluation of Muitithreaded Architecture for Defense Applications DAR7-F188/00d

6. AUTHOR(S)

Wayne Pfeiffer, Larry Carter, Allan Snavely, Robert Leary, Amit Majumdar,

Sharon Brunett (Caltech), John Feo (Tera), Brian Koblenz (Tera), L.G. Stern (Tera)
Joseph W. Manke (Boeing), anad Timothy P. Boggess (Sanders/Lockheed Martin)

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
San Diego Supercomputer Center, University of California, San Diego REPORT NUMBER

Center for Advanced Computing Research, Caltech, MC 158-79 Pasadena, CA 91125

Tera Computer Company, 411 First Avenue South, 600, Seattle WA 98104 SDSC TR-1999-1

The Boeing Company, Info. & Support Serv., P.O. Box 3707, Seattle, WA 98124
Sanders/Lockheed Martin, Adv. Engr Tech. Div, P.O. Box 868, Nashua, NH 03061

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
DARPA/ITO AGENCY REPORT NUMBER
3701 NORTH FAIRFAX DRIVE DABT63-97-C-0028

ARLINGTON, VA 22203-1714

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
DARPA/PMATO
Approved for public release; distribution is unlimited DARPA/S&IO
DARPA/Technical Library
DTIC

ATZS-DKO-

13. ABSTRACT (Maximum 200 words)

Multithreading has received considerable attention in recent years as a promising way to hide memory
latency in high-performance computers, while providing access to a large and uniform shared memory.

Tera Computer of Seattle has designed and built a state-of-the-art multithreaded computer called the MTA.
its intended benefits are high processor utilization, scalable performance on applications that are difficult to
parallelize, and reduced programming effort.

The largest MTA and the only one outside of Seattle is at the San Diego Supercomputer Center (SDSC) on the
campus of the University of California, San Diego (UCSD). Currently the MTA at SDSC has 8 processors.

The performance and usability of the MTA for 14 defense-relevant applications were evaluated in a two-year
project described here. The applications included seven standard kernels, five mini-applications, and two
large applications. The evaluation was led by researchers at UCSD with collaborators at Caltech, Tera, Boeing,
and Sanders/Lockheed Martin. UCSD researchers also carried out multithreaded scheduler and compiler
studies. The principal findings of the project follow in the enclosed final report.

14. SUBJECT TERMS 15. NUMBER OF PAGES
N/A 70
. : 16. PRICE CODE
N/A
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unrestricted Unrestricted Unrestricted None

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)




SDSC TR-1999-1

Evaluation of a Multithreaded Architecture
for Defense Applications

Wayne Pfeiffer, Larry Carter, Allan Snavely,
Robert Leary, and Amit Majumdar
San Diego Supercomputer Center
University of California, San Diego

Sharon Brunett
California Institute of Technology

John Feo, Brian Koblenz, and L.G. Stern
Tera Computer

Joseph W. Manke
Boeing

Timothy P. Boggess
Sanders/Lockheed Martin

Final Report to DARPA
September 1999




CONTENTS

SUMMARY

APPROACH AND FINDINGS
Objectives and Background
Approach
Tera MTA Characteristics
Reference Computer Characteristics
Applications
MTA Performance
MTA Usability
Multithreaded Scheduler and Compiler Studies
Acknowledgments

References

CASE STUDIES
Linear Algebra Kernels
NAS Parallel Benchmark Kernels
TPHOT - Photon Transport
C3I Benchmarks
Explode ~Thermal Explosion Benchmark
Synthetic Aperture Radar
TRANAIR - Computational Fluid Dynamics
Electromagnetics
Symbiosis

S1

0w NN N W=

13
15
17
17

A-1
B-1
C-1
D-1
E-1
F-1
G1
H-1

11




SUMMARY

Multithreading has received considerable attention in recent years as a promising way to hide
memory latency in high-performance computers, while providing access to a large and uniform
shared memory. Tera Computer of Seattle has designed and built a state-of-the-art multithreaded
computer called the MTA. Its intended benefits are high processor utilization, scalable perform-
ance on applications that are difficult to parallelize, and reduced programming effort.

The largest MTA and the only one outside of Seattle is at the San Diego Supercomputef Center
(SDSC) on the campus of the University of California, San Diego (UCSD). Currently the MTA at
SDSC has 8 processors.

The performance and usability of the MTA for 14 defense-relevant applications were evaluated in a
two-year project described here. The applications included seven standard kernels, five mini-
applications, and two large applications. The evaluation was led by researchers at UCSD with col-
laborators at Caltech, Tera, Boeing, and Sanders/Lockheed Martin. UCSD researchers also carried
out multithreaded scheduler and compiler studies. The principal findings of the project follow.

MTA Performance

« For four applications tuned on the MTA and a reference high-end computer, the performance on
8 MTA processors is appreciably higher than on any number of processors of the reference com-
puters. The MTA speed advantage ranges from a factor of 1.8 over a single vector processor for a
large application to a factor of 5.4 over 12 workstation processors for a mini-application. For two
other, kernel applications the speed on 8 MTA processors is comparable to the speed on 8 vector
processors.

e For tuned applications, single-processor performance of the multithreaded Tera MTA (with a
260-MHz clock) is typically lower than that of the reference vector computer (with a 440-MHz
clock). The vector processor is substantially faster than the MTA processor (by factors ranging
from 2.2 to 6.5) for 5 out of 8 applications compared. The MTA processor is appreciably faster (by a
factor of 1.5) for one application, an integer sort kernel.

o The MTA single-processor theoretical peak speed of three floating-point operations (two adds
and one multiply) per clock cycle is not obtainable in practice. The best-achievable speed is two
floating-point operations (one add and one multiply) per clock (i.e., 520 Mflops). This can be ap-
proached for dot products. By contrast the vector processor peak speed is four floating-point op-
erations (two adds and two multiplies) per clock (i.e., 1,760 Mflops). This can be approached for
well-vectorized linear algebra kernels. ,

e The speed of an MTA processor is also limited by its ability to issue at most one memory refer-
ence per clock cycle. Some common math kernels need to be rewritten to work around this limita-
tion. By contrast the vector processor can issue four loads and two stores each clock.

e For tuned kernels the MTA consistently obtains a large fraction of its single-processor peak
speed and appears to exhibit less variability in this fraction than does the vector processor. This
suggests that multithreading has broader applicability than vectorization.

e For tuned applications, single-processor performance of the MTA is typically higher than that of
cache-based, workstation processors of comparable clock speed. An MTA processor is substan-
tially faster than a workstation processor (by factors ranging from 2.5 to 10) for 5 out of 6 applica-
tions compared. This indicates the effectiveness of multithreading as compared to cache utiliza-
tion.

e Scalability on the MTA is appreciably better for the kernels studied than for the mini- and large
applications. Indeed, 6 of the 7 kernels have good or very good scalability (parallel efficiency be-
tween 0.81 and 1.00 on 8 processors), while 5 of the 7 mini- and large applications have poor or fair
scalability (efficiency between 0.50 and 0.71 on 8 processors). The larger applications have many
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more sections of code that need to be tuned to achieve good performance, and insufficient time was
available during the project for the extra tuning required.

* Typically, 40 or more streams are needed on each processor to hide memory latency and achieve
full processor utilization. Since each hardware stream holds the context for a single software
thread, this requires that the compiler and programmer find substantially more parallelism than on
traditional parallel computers. ,

* Performance of serial sections of code is very slow on the MTA - slower than on a typical work-
station. This arises because a stream can execute an instruction only once every 21 clocks. Tuning
to minimize serial (single-threaded) code is thus critical for achieving high performance of an indi-
vidual application. '

* The overhead to acquire a stream is on the order of hundreds of instructions. This affects par-
allelization strategy and often makes performance on small problem sizes disappointing. In gen-
eral, parallelizing a loop with few instructions and few iterations is counter-productive.

* The MTA is able to exploit inner-loop (vector) parallelism, but prefers outer-loop parallelism.
The overhead to parallelize an outer loop is paid once, but the overhead to parallelize an inner loop
is paid the number of times that the outer loop iterates (unless the loops are fused). Indeed, a good
tuning strategy on the MTA is to first find parallelism and then move it to an outer loop.

* The MTA can synchronize at the word level with no additional cost over that of a normal mem-
ory reference. This capability enables parallel programming in a dataflow style when dependen-
cies are complicated or not known until runtime. This allows some applications to be parallelized
in ways not possible on other parallel computers.

MTA Usability

* The MTA's parallel programming model is very attractive. Multithreading is the only type of
parallelization that need be considered, regardless of the number of processors.

* MTA usability also benefits from the lack of data caches. This eliminates the tuning for data
locality that is typical on computers with workstation processors.

* Tera's sophisticated compilers embody impressive technology and automatically parallelize
many constructs. In general, the Fortran compiler is more effective at parallelization than the C
compiler. Nevertheless, neither compiler is able to achieve adequate multithreading automatically
except for small kernels. Tuning, often by adding compiler directives, is thus essential for typical
applications.

* Tuning is facilitated by good tools, especially Canal and Traceview. Canal annotates source
code to show what the compiler parallelized, what it did not, and why. Traceview does a post-
mortem analysis of an execution trace and makes a time-dependent piot of processor utilization
and performance. ‘

¢ Porting and tuning small applications to run on the MTA are roughly comparable to doing so
for other uniform shared-memory computers and generally easier than for distributed-memory
computers. One need not be concerned with data distribution across hierarchical memory.

* Porting and tuning large applications to run on the MTA have proved much more difficult. Be-
cause the MTA requires high levels of parallelism, more sections of serial code need to be parallel-
ized than on other computers, and more parallelism must be found. This, coupled with the greater
complexity of the applications, substantially increases the tuning effort.

* System instability, compiler bugs, compiler features (such as strict conformance to language
conventions), and slow I/O have seriously reduced programmer productivity and lessened the in-
herent advantage of the MTA's parallel programming model. While software maturity improved
during the course of the project, usage of the MTA at SDSC has been largely restricted to software
development, evaluation, and computer science studies, rather than production computing.
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Multithreaded Scheduling and Compilation

e Improved throughput has been demonstrated on the MTA when various combinations of kernel
jobs are scheduled to run simultaneously on a single processor rather than sequentially. Such jobs
are called "symbiotic." Through symbiotic job scheduling, parallel peaks in one job's execution pro-
file can fill parallel valleys in another's profile.

e Highly tuned codes are less symbiotic than untuned versions of the same codes on the MTA.
Because a parallel section cannot acquire streams released by another parallel section, highly tuned
parallel codes with few serial sections can "throttle” each other and lead to reduced throughput. A
more dynamic resource allocation strategy is being designed to address this issue.

e Tera's compilers often generate optimal code with regard to memory references. The generated

code also uses an effective and low-overhead variant of dynamic scheduling to distribute iterations
of a parallel loop to processors. ,
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APPROACH AND FINDINGS

Objectives and Background

The principal objective of the two-year project described here was to determine conclusively
whether a multithreaded computer architecture, embodied in the Tera MTA, would allow major
defense applications to scale to sustained multi-gigaflops performance. Many such applications
perform poorly or do not scale on conventional parallel computers despite extensive reprogram-

ming. A further objective was to explore software approaches to multithreading that might
broaden its applicability and improve performance over the current state of the art.

The achieved speed of conventional parallel computers on most applications is much lower than
the peak speed. This occurs, in part, because data cannot be moved from memory to the processors
fast enough to keep them fully busy. Moreover, the memory latency (i.e., time to retrieve data from
memory) is not improving as fast as the processor clock period. Hence, management of memory
latency is increasingly important to obtain high, sustained speeds. The most promising approach to
manage memory latency in a scalable way is multithreading.

The Tera MTA, designed and built by Tera Computer of Seattle, is the state-of-the-art multi-
threaded computer investigated here. It has multithreaded processors and a high-bandwidth net-
work to hide a large amount of latency to a large and uniform shared memory. Sophisticated com-
pilers and performance tuning tools are available to extract parallelism from a broad spectrum of
applications. Expected benefits of the MTA include high processor utilization, near linear scalabil-
ity, and reduced programming effort.

The largest MTA and the only one operational outside of Seattle is at the San Diego Supercomputer
Center (SDSC) on the campus of the University of California, San Diego (UCSD. The MTA at SDSC
was installed in stages over the past two years, growing from one to two to four and most recently
eight processors.

Acquisition of the 8-processor MTA was funded by NSF and DOE. Those agencies have also sup-
ported evaluations of the MTA for applications of interest to their user communities. The DARPA-
funded project described here extended those evaluations to encompass defense applications.

Approach

The three technical tasks proposed and carried out were as follows:

~ Implementation, optimization, and evaluation for the first time of defense applications on
an operational multithreaded computer, the Tera MTA.

- Studies of the parallel profile of the applications and how that affects processor utilization
and performance scaling to systems much larger than the modest-size MTA available at
SDSC.

- Development and evaluation of compiler technology, runtime support, and adaptive tech-
niques for multithreaded computers. -

Signiﬁcant progress was made on all three tasks with findings summarized in later sections and
detailed in case study descriptions. Additional information on the approach used in each task fol-
lows here.

The work was led by researchers at UCSD with collaborators at Caltech, Tera, Boeing, and Sand-
ers/Lockheed Martin. Biweekly conference calls were held throughout the two-year project to co-
ordinate activities. In addition, semiannual workshops were held at UCSD for more comprehen-
sive exchange of results among the researchers funded by DARPA as well as those funded by NSF
and DOE in companion evaluations. Presentations on the research results were given at several
technical conferences as noted in the section on publications.




Implementation and Evaluation of Defense Applications on MTA

To validate the potential benefits of multithreading, various applications were evaluated on the
MTA at SDSC. Included were two large applications, five mini-applications, and seven standard
kernels. Another large application was originally planned for study, but was replaced by a mini-
application and augmented by kernels to provide broader coverage when it became clear that im-
plementing large applications on the MTA required more effort than anticipated. The applications
are described in a later section and in the case studies.

Each collaborating partner was responsible for implementing and evaluating one or more applica-
tions. Considerable help in optimizing the applications was provided by Tera.

The generic subtasks originally proposed and carried out by the pariners were as follows:

~ Become familiar with multithreading and the MTA.

— Develop a multithreaded version of the application that runs on the MTA.

- Identify program bottlenecks and inefficient modules using the Canal and Traceview tools
provided by Tera.

— Insert compiler directives or restructure code to improve performance.

- Suggest compiler improvements to eliminate identified problems.

— Devise and implement new algorithms that take better advantage of multithreading.

— Quantify the performance of the application for typical problems on the MTA, with impor-
tant metrics being processor utilization and scalability.

- Compare performance on the MTA with that achieved on vector multiprocessors, super-
scalar multiprocessors, and multicomputers.

- Quantify the programming effort and the extent and nature of application changes to
achieve superior performance.

Results from all the application case studies were collected by researchers at UCSD and summa-
rized in the performance and usability findings that appear in later sections. Corroborating results
have also been obtained by UCSD in its NSF-funded evaluation of the MTA for scientific applica-
tions.

Studies of Parallel Profiles and Performance Scaling on MTA

Performance of the applications was examined in considerable detail on the MTA. The intent was
to determine whether a multithreaded architecture would support a broader spectrum of parallel-
ism than conventional computers. To quantify this, each of the partners carried out one or more of
the following subtasks:

— Profile MTA processor utilization as a function of time using the Traceview tool.
- Determine how many threads are needed for full processor utilization.

— Develop scaling models to project performance to MTA systems larger than the 8-processor
system at SDSC.

~ Evaluate the efficacy of multithreading to provide high system utilization.

The very late availability of the 8-processor MTA and the presence of broken links in the network

greatly reduced the scope of the scaling studies and precluded development of well-substantiated
scaling models.

Development and Evaluation of Compilers and Runtime Support for Multithreaded Computers

Compiler technology and runtime support were developed and evaluated by UCSD to improve
performance on existing and future multithreaded computers. This work involved the following
subtasks:

— Explore new parallelization and code generation techniques that automatically extract par-
allelism in applications.

— Study the composite parallel profile of real work loads to understand the interaction of con-
current jobs competing for resources of a multithreaded architecture and to support the de-




sign of runtime system strategies that improve processor utilization, job throughput, and
load balance.

Additional subtasks to study adaptive execution and compilation strategies were envisioned in the
proposal, but were not carried out because access to an MTA with sufficient functionality was de-
layed.

Tera MTA Characteristics

Multithreaded Processors

The Tera MTA [1] represents a radical departure from traditional vector- or cache-based computers.
MTA processors have no data cache or local memory. Instead, they are connected via a network to
commodity memory, configured in a shared-memory fashion. Hardware multithreading is used to
tolerate high latencies to memory, typically on the order of 150 clock cycles. Even higher latencies
can be tolerated by instruction lookahead.

Each processor has up to 128 hardware streams, each of which holds the context for one thread in a
program counter and 32 registers. The processor switches from one stream to another every clock
period, executing instructions from non-blocked streams in a fair fashion approximating round
robin.

A stream can execute an instruction only once every 21 clocks (the length of the instruction pipe-
line), so a minimum of 21 streams is required to keep a processor fully utilized, even if no instruc-
tions reference memory. Typically, 40 or more streams are needed on each processor to hide mem-
ory latency and achieve full processor utilization. This requires that the compiler and programmer
find substantially more parallelism than on traditional parallel computers. Performance is poor for
sections of code with insufficient parallelism and particularly poor for serial sections, which run on
a single stream.

If every instruction required data from the previous instruction, then at most 128 clocks of memory
latency could be tolerated. However, each stream can issue 8 memory references without waiting
for any to return (assuming no dependencies), so instruction lookahead can often sidestep this
problem.

The compiler annotates each instruction with a lookahead number: the number of subsequent in-
structions from the same stream that can be executed before the memory reference of the current
instruction must be completed. A lookahead of 0 means that the next instruction needs the current
memory reference and cannot be executed until it has completed. If lookahead were always 4,
about 30 streams would suffice to saturate the processor. Fortunately, scientific codes exhibit a
high level of instruction-level parallelism. The compiler effectively uses software pipelining to
schedule memory references ahead of their uses and often achieves the maximum lookahead of 7.

Each clock a processor can issue an instruction containing a memory reference and two other op-
erations. The other operations may be a floating-point add and a floating-point fused multiply-
add. Thus the theoretical peak speed of a processor is three floating-point operations per clock
(two adds and one multiply). In practice, no more than two floating-point operations per clock
(one add and one multiply) has been sustained on realistic computations. The practical peak is
very nearly achieved for dot products.

The maximum of a single memory reference per clock sets an upper bound on memory bandwidth
of one 8-byte (64-bit) word to each processor every clock. This further limits processor perform-
ance for many mathematical kernels. For example, the DAXPY linear algebra kernel is restricted to
at most 2/3 of a floating-point operation per clock.

The overhead to acquire a hardware stream is of the order of hundreds of instructions. This affects
parallelization strategy and makes performance on small problem sizes disappointing. In general,
parallelizing a loop with few instructions and few iterations is counter-productive. :




The MTA is able to exploit inner-loop (vector) parallelism, but prefers outer-loop parallelism. The
overhead to parallelize an outer loop is paid once, but the overhead to parallelize an inner loop is
paid the number of times that the outer loop iterates (unless the loops are fused). Indeed, a good
tuning strategy on the MTA is to first find parallelism and then move it to an outer loop. Never-
theless, to get good performance on the MTA, programmers must parallelize at a level that has suf-
ficient parallelism to hide memory latency and amortize overhead costs. This may require paral-
lelization of both inner and outer loops.

The MTA can synchronize at the word level with no additional cost over that of a normal memory
reference. This capability enables parallel programming in a dataflow style when dependencies are
complicated or not known until runtime.

Network and Memory

The network connecting processors to memory is a partially connected 3-D torus. It is also sparsely
populated, with multiple routing nodes per compute processor rather than the reverse configu-
ration increasingly used on distributed-memory systems. Each node has three or four communica-
tion ports and a resource port. The resource port may be connected to a compute processor, an I/O
processor, or a memory board. Some nodes are not connected to any hardware resource.

The number of nodes is at least p%/2, where p is the number of compute processors. This means

that the bisection bandwidth scales linearly with p, while the network latency scales as p!/2. The
maximum bandwidth from memory to a processor is 8 bytes times the clock speed. Small systems

have more than p3/2 nodes for reasons unrelated to bandwidth requirements.

The 8-processor system at SDSC has 2x4x8 = 64 nodes (where 64 > 83/2 = 22.6). Of these nodes,

!

8 are attached to compute processors;
8 are attached to I/ O processors;

16 are attached to memory boards;
32 are not attached to any resource.

The associated network has 3.5x4x8 = 112 bidirectional links. Several of these links are broken. For
memory-intensive applications, the presence of broken links reduces the effective bandwidth per
processor as the number of processors increases.

The total amount of memory is proportional to the number of processors. The system at SDSC has
one GB per processor corresponding to two memory boards. Each memory board has 64 banks,
and memory references by the processors are randomly scattered among ali of the banks of all of
the memory boards, except for fetches that access the processor instruction cache via a dedicated
data path. As a result, memory is equally accessible to each processor, and memory latency is in-
dependent of stride.

The MTA thus abstracts away the concept of data layout. The programmer cannot determine the
physical allocation of memory and is relieved from concerns associated with the physical repre-
sentation of an abstract data structure.

Physical Configuration

Processors and memory are combined into four-board resource modules. One board is the com-
pute processor; another board is the I/O processor; and the remaining two boards are for memory.
The 8-processor MTA at SDSC thus has 8 resource modules.

The resource modules connect to the backplane, which contains the interconnection network. This
network is made up of additional boards, one per resource module, or 8 boards for the machine at
SDSC.

Each board contains custom GaAs chips. Overall there are more than 20 different types of chips.
Most of the chips on the memory boards, however, are commodity silicon SDRAM.
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’ The MTA is quite compact. Hence it has a high power density and is water cooled.
Software

The Tera operating system is a parallel version of Unix, based on Berkeley sources and modified to
use a concurrent microkernel developed by Tera. A two-tier scheduler is incorporated in the mi-
crokernel to support execution of multiple tasks, both large and small, without manual interven-
tion. Large tasks (running on more than a single processor) are scheduled via a bin-packing
scheme, while small tasks are scheduled using a traditional Unix approach.

Unix became available on the MTA in the latter half of the project. Before that a relatively simple,
single-user operating system, called Carlos, was provided.

Fortran, C, and C++ compilers are available. They have separate front-ends, but a common back-
end (or optimizer). All three languages may call each other freely.

The sophisticated compilers automatically parallelize serial code by decomposing it into threads.
Generally it is necessary for the programmer to augment automatic parallelization by inserting
pragmas or explicit parallel constructs into the code. The automatic parallelism uncovered by the
compilers and the explicit parallelism described by the programmer can be freely mixed and
matched. If desired, the programmer can also take control of thread management to gain finer
control of the parallel profile of the application.

Tera provides two powerful tools to help a programmer tune a code for better performance. A tool
called Canal provides an annotated version of the source code that shows what the compiler par-
allelizd, what it did not, and why. A second tool called Traceview does a post-mortem analysis of
an execution trace and makes a time-dependent plot of processor utilization and performance.

The combination of multithreaded processors and a uniform shared memory affords a very attrac-
tive parallel programming model on the MTA. Multithreading is the only type of parallelization
that need be considered, regardless of the number of processors. It can successfully tolerate the
latency of memory access, obviating the need for data caches. This relieves the programmer of de-
signing methods for enhancing the locality of memory references.

Evolution of System at SDSC

When the project began in July 1997, a 4-processor MTA was expected to be operational at SDSC
within three months, and an upgrade to 8 processors was expected no more than six months later.
As it turned out, installation of the 4- and 8-processor systems was delayed by about 15 months
because of various manufacturing problems. This necessitated extending the project from 18
months to 24 months to allow 8-processor results to be obtained. Even still, installation of the full
8-processor system was not completed until the last month of the project. This substantial delay
and the lack of robust software seriously limited the scope of the evaluation.

To allow the evaluation to begin, Tera delivered smaller one- and two-processor systems during
the first year of the project. These had various hardware and software deficiencies, as noted
shortly. Some significant milestones in the evolution of the MTA hardware and software at SDSC
are indicated in Table 1.

Table 1. Evolution of Tera MTA at SDSC

Delivery  Proces- Clock Operating
date sors (MHz) system
12/97 1 145 Carlos
1/98 1 260 Carlos
4/98 2 255 Carlos
9/98 2 255 Unix
12/98 4 260 Unix
5/99 8 260 Unix




The clock speed improved substantially from 145 MHz in the initial one-processor system to 260
MHz in the final 8-processor system. This improvement, though welcome, still fell more than 20%
short of the design speed of 333 MHz.

Other important hardware characteristics improved with time as manufacturing problems were
overcome. In particular, the number of working streams per processor increased from less than 100
in the one- and two-processor systems to more than 100 in the later 4- and 8-processor systems. In
addition, scalability was much better on the larger systems, since the presence of broken links in
the network was less deleterious.

Significant improvements in the software environment also took place during the project. Carlos,
the initial operating system, was superseded by Unix, and the compiler became more powerful as
the system matured. Many bugs that plagued early versions of the operating system and compiler
were eliminated, resulting in a more robust and productive software environment near the end of
the project.

Reference Computer Characteristics

To place in perspective the performance of applications on the Tera MTA, each application was
also run on one or more reference computers of more traditional design. These reference comput-
ers encompass the major architectural classes. Characteristics of their processors and those of the
MTA are listed in Table 2.

Several of the parallel reference computers had more processors than listed in the table. The tabu-
lated numbers are just the maxima used in the comparative calculations. The MTA values corre-
spond to those at the end of the project, with the peak speed based on the practical limit of two
floating-point operations per clock.

Table 2. Processor characteristics of computers used in evaluation

Max pro- Clock Peak Peak pro-
Computer class / cessors speed flops/ cessor speed
Model Processor Site used (MHz) dock (Mflops)
Shared-memory multiprocessors
Multithreaded
Tera MTA Custom GaAs SDSC 8 260 2 520
Parallel vector
Cray T90 Custom ECL SDSC 8 440 4 © 1,760
Parallel superscalar
NeTpower Sparta Intel Pentium Pro Caltech 4 200 1 200
Distributed-memory computers
Uniprocessor nodes
Cray T3E-600 Digital Alpha 21164  SDSC 64 300 2 600
ccNUMA
HP X2000 HP PA-8000 Caltech 64 180 4 720
HP V2250 HP PA-8200 Caltech 32 240 4 960
SGI Origin2000  MIPS R10000 Boeing 16 250 2 500
Uniprocessors
Digital Digital Alpha 21164A  Caltech 1 500 2 1,000
Sun Sun UltraSPARC I SDSC 1 200 2 400
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Applications

To validate the potential benefits of multithreading, the original proposal called for at least three
large applications and four mini-applications to be evaluated on the MTA. One of the large appli-
cations was replaced by a mini-application, and only portions of the other two large applications
were considered when it became clear that implementing large applications on the MTA required
more effort than anticipated. To assure adequate algorithmic coverage, several standard kernels
were added and studied in conjunction with the companion NSF-funded evaluation.

The final applications evaluated, along with the responsible partners, are listed in Table 3. In-
cluded are seven standard kernels, five mini-applications, and two large applications. Brief de-
scriptions of each follow here, while more elaborate discussions are included in the case studies.

Table 3. Applications evaluated

Application class / Lines
Lead partner Code Description Language  of code
Linear algebra kernels
SDSC DGEMM Matrix-matrix multiply Fortran 100
Linpack Dense linear equation solver * Fortran  700-2,000
NPB kernels
SDSC CG Conjugate gradient Fortran 1,110
EP Embarrassingly parallel Monte Carlo Fortran 250
FT Fast Fourier transform Fortran 1,125
IS Integer sort C 750
MG Multigrid Fortran 1,450
Mini-applications
SDSC TPHOT Monte Carlo photon transport Fortran 5,000
Caltech Threat Analysis C 1,400
Terrain Masking C 1,000
Explode Thermal explosion model C 1,000
Sanders RASSP SAR High-resolution synthetic aperture radar C 2,000
Large applications
Tera TRANAIR Computational fluid dynamics Fortran & C 200,000
Boeing FMM Prototype Electromagnetics Fortran 29,000

One of the kernels added and investigated at SDSC is the Linpack benchmark [2, 3]. It provides an
important test for any new computer, since its performance results are widely reported. The kernel
consists of a dense linear equation solver common to many scientific computations. The most
computationally intensive part of the kernel is the matrix-matrix multiply routine DGEMM [4],
which is included here as a separate kernel. Processors frequently sustain a large fraction of their
peak performance on DGEMM and Linpack, so these kernels are particularly useful for determin-
ing the practical maximum performance of a processor.

The NAS Parallel Benchmarks (NPBs) [5] are also widely studied and reported. They consist of five
kernels representing common numerical algorithms and three mini-applications in various sizes.
The latest versions of the benchmarks are NPB 2.3 with MPI-based (parallel) source code and NPB
2.3-serial with single-processor (serial) source code. The investigation here, led by SDSC research-
ers with support from Tera staff, considered only the five kernels and the 2.3-serial source code,
which is suitable for machines such as the T90 and MTA that rely on the compiler to do paralleliza-
tion.

TPHOT is a time-dependent Monte Carlo code that simulates photon transport in a plasma [6].
Various versions of the code have been used for several years to examine and benchmark parallel
Monte Carlo particle transport on a variety of computers. TPHOT was added as a mini-application
during the course of the project and investigated at SDSC.
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Caltech researchers investigated two benchmarks from the C3I Parallel Benchmark Suite [7], which
was developed for Rome Air Force Laboratory by Honeywell. The benchmarks considered —
Threat Analysis and Terrain Masking — are computationally intensive, memory intensive, and
compact. They involve non-trivial data and control structures, and they have the potential for
large-scale parallelization. Investigation of a third benchmark was planned, but was deferred
when it was decided that the other two were representative.

Caltech researchers also planned to implement and evaluate a large application called SF Express,
which simulates synthetic forces of many thousands of entities. Implementation efforts during the
first half of the project indicated that the MTA software environment was not mature enough to
handle the application's hundreds of files and 500,000 lines of code.

Accordingly, effort at Caltech for the remainder of the project was redirected to a thermal explosion
benchmark. This mini-application, called Explode, simulates an explosive wave that initiates
chemical reactions in a reactive material [8]. The code employs a fixed 2-D mesh, but has a time-
varying compatational workload at each mesh point. Explode thus provides a good test for a par-
allel computer's ability to do dynamic load balancing.

The final mini-application investigated was the RASSP Synthetic Aperture Radar (SAR) benchmark
[9]. Developed at the MIT Lincoln Laboratory, this benchmark was studied by researchers from
Sander/Lockheed Martin and Tera as representative of an application that would need to run in
real time. The deadline requirements imposed by real-time processing introduce issues not ad-
dressed by the other applications in the evaluation.

Tera, with Boeing support, implemented roughly half of TRANAIR [10, 11]. This large, computa-
tional fluid dynamics application with about 400,000 lines of code models transonic flow around
complex configurations and is used extensively at Boeing for aircraft design. TRANAIR is a gen-
eral geometry code that solves the full potential equation with a directly coupled integral boundary
layer. An adaptive algorithm with a GMRES solver is used. TRANAIR is representative of many
defense legacy codes in its complexity and its lack of portability.

Boeing also studied a large, 3-D electromagnetics application, called PARADYM [12, 13]. Its
method of moments solver, which uses the GMRES iterative method and the multi-level Fast Mul-
tipole Method (FMM), is representative of the best numerical algorithms used at Boeing for com-
putationally intensive applications. The original plan was to implement and tune the full applica-
tion, which has about 93,000 lines of code. Although a multithreaded implementation was eventu-
ally achieved, it worked correctly only on a single processor because of problems with dynamic
memory allocation. Thus performance evaluation was focused on the core FMM computation
within PARADYM, which did work correctly on multiple processors, except for the largest test
case. At 29,000 lines of code, the FMM prototype code is still a large and demanding application.

MTA Performance

Performance results for all of the applications are presented in considerable detail in the case stud-
ies later in this report, while early results are in Refs [14] to [19]. A concise summary of the latest
results is given in Table 4.

For one or two test problems involving each application, speeds on the MTA are compared with
those on a reference computer, both at one processor on each machine and at the number of proces-
sors for which the speed has maximized. In most cases, speedups on 4 and 8 processors are also
compared. All of the applications have undergone extensive tuning to multithread on the MTA.
Where parallel results are available for a reference computer, some tuning on that computer has
also been done, but generally not as much as for the MTA.

The relative speed is defined as the ratio of the reciprocal run times on the two machines being
compared. The run time measured was the wall-clock (or elapsed) time on a dedicated group of
processors, with the exception of some single-processor T90 runs. For those runs, which were not
in dedicated mode, the cpu time was measured and closely approximates the wall-clock time in
dedicated mode.
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Table 4. Performance results for tuned applications on MTA and a reference computer

Application class / Reference  lpspeed: MTA eff* Ref eff* Max speed:
Code Testproblem computer MTA/ref' processors’ processors’ MTA/ ref*
Linear algebra kernels
DGEMM N=2,000 T90 031 0.98* 8
Linpack N=1,000 T90 - 0.16 048* 4
0.30* 8
N=10,000 T90 0.26 0.83* 4
0.65* 8
NAS parallel kernels _
CG Class A T90 0.92 0.94* 4 0.80*4
0.72* 8 0.67* 8 0.98
Class B T90 0.86 0.86* 8 074* 8 1.00
EP Class A T90 111 1.00* 4 1.00* 4
1.01*8 1.00* 8 112
Class B ' 1.00* 8
FT Class A T90 0.27 1.01* 4 0.84*4
0.95* 8 0.68* 8 0.38
Class B 0.94* 8
IS Class A T90 1.51 0.94* 4 055* 4
0.78* 8 027*8 4.26
Class B 0.81*8
MG Class A T90 0.34 0.95* 4 0.96* 4
0.81*8 0.86* 8 0.33
Class B 0.81*8
Mini-applications
TPHOT 24M photons T3E 4.19 1.01* 4 0.99* 4
' 0.99* 8 0.99* 8
0.98 *64 0.68
Threat Analysis 5 scenarios X2000 3.36 079* 4 0.99* 4
0.50* 8 0.99*8
0.78 *64 0.27
Terrain Masking 5 scenarios X2000 543 0.97* 4 0.85* 4
071*8 0.68* 8
0.50 *12 54
Explode 301x301 mesh V2250 2.50 097* 4 0.61* 4
0.92* 8 043* 8
0.38 *16 3.00
RASSP SAR One frame of usn 109 0.82* 4
512 pulses 0.69* 8
Large applications
TRANAIR B7471-4: T90 045 071* 4
115k rows 0.60* 8 215
B7471-5: T90 0.37 0.81*4
139k rows 0.60* 8 178
FMM Prototype 8x8 plate: 02000 - 0.63 0.89* 4 0.97* 4
16k sources 0.66* 8 0.91* 8
0.62 *16 0.34
16x16 plate: 02000 0.83 084*4  097*4
64k sources 0.69* 8 091*8
. 0.80 %16 0.36
1. Ratio of single-processor speed on MTA to that on reference computer
2. MTA speedup = efficiency * number of processors on MTA
3. Reference speedup = efficiency * number of processors on reference computer
4. Ratio of maximum speed on MTA to that on reference computer




The definitions of speedup and parallel efficiency are standard: speedup is just the ratio of the re-
ciprocal run time on a specified number of processors to that on one processor, while the parallel
efficiency is the ratio of the speedup to the number of processors. For those few instances in which
the reference computer had a single-processor speed for parallel code measurably lower than for
serial code, the speedup is relative to the serial code. Thus the speedups may appear lower in Ta-
ble 4 than in some of the case study tables.

Single-Processor Performance

Single-processor speeds on the MTA and T90 are compared in Table 4 for seven standard kernels
and one large application. Six of the kernels are written in Fortran; one kernel is written in C; and
the large application is mostly Fortran, with a small amount of C.

On four kernels - DGEMM, Linpack, FT, and MG - and the large TRANAIR application a single
T90 processor is appreciably faster than one MTA processor. These codes vectorize very well on
the T90, which allows it to take advantage of its much higher peak floating-point performance and
larger number of memory accesses per clock compared to the MTA. The measured speed advan-
tage of the T90 varies from a factor of 6.2 for the Linpack N=1,000 problem down to a factor of 2.2
for one of the TRANAIR test problems.

For two kernels — CG and EP - the single-processor speeds on each computer are within 15% of
each other. For one kernel - IS ~ the MTA is appreciably faster than the T90, by a factor of 1.5. This
is the only kernel written in C, though that is probably coincidental.

Five of the kernels are floating-point intensive. For these it is useful to compare the measured T90
and MTA speeds with the peak processor speeds. Such a comparison is shown in Table 5.

Table 5. Single-processor speeds for floating-point intensive kernels on T90 and MTA

Measured Measured Measured/ Measured/

: - T90 speed MTA speed peak peak
Kernel Problem size (Mflops) (Mflops) T90 speed MTA speed
DGEMM N=2,000 1,580 495 0.90 0.95
Linpack N=1,000 1,441 232 0.84 0.45

N=10,000 1,556 411 0.88 0.79
CG Class A 178 164 0.10 0.32
Class B 202 174 0.11 0.33
FT Class A 696 187 0.40 0.36
MG Class A 563 194 0.32 0.37

The peak processor speeds are 1,760 Mflops (based on four flops per clock) on the T90, as compared
to 520 Mflops (or two flops per clock) on the MTA. The T90 also has higher memory bandwidth,
since it can issue four loads and two stores each clock (with its two pipes) versus only one memory
reference per clock on the MTA.

For three of the kernels - DGEMM, FT, and MG - the two machines achieve comparable fractions
of their peak speeds. For Linpack the T90 gets a substantially higher fraction of its peak speed than
does the MTA (especially for small problems), whereas for CG the reverse is true (because of poor
vectorization on the T90). Overall, the MTA shows less variability in the fraction of peak speed
achieved, which suggests that multithreading may be more broadly applicable than vectorization.

On the other hand, the markedly lower performance on the MTA of Linpack compared to its domi-

nant DGEMM kernel points up a significant problem. MTA performance is evidently quite sensi-
tive to small regions of code where less than optimal parallelization can be achieved. Such regions
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occur in the final stages of dense matrix factorization in Linpack and in various routines other than
the dominant DGEMM kernel.

Single-processor speeds on the MTA and several computers with workstation processors are com-
pared in Table 4 for five mini-applications and one large application. Four of the mini-applications
are written in C, while the remaining mini-application and large application are in Fortran.

For all of the mini-applications — THPOT, Threat Analysis, Terrain Masking, Explode, and SAR -
the MTA is faster on a single-processor basis. The largest MTA speed advantage is more than a
factor of 10 relative to a 200-MHz UltraSPARC II for the SAR benchmark. The smallest advantage
is a factor of 2.5 relative to a 240-MHz PA-8200 in the V2250 for the Explode benchmark, which is
written in C. :

It is noteworthy that the MTA substantially outperforms cache-based processors with comparable
clocks for all of the mini-applications. This indicates the effectiveness of multithreading as com-
pared to cache utilization for modest size applications.

By contrast, for the FMM large application a single MTA processor is slower than a 250-MHz MIPS
processor in the 02000. The speed advantage of the 02000 is a factor of 1.6 for the smaller problem
and a factor of 1.2 for the larger problem. Evidently the FMM Prototype has substantial data local-
ity, which allows very effective use of cache on the 0O2000.

Multithreading (i.e., parallelization) is required on the MTA to get acceptable performance even on
a single processor. Performance of serial sections of code is very slow on the MTA - slower than on
a typical workstation - so tuning to minimize such sections is critical.

The importance of tuning is illustrated by the results presented in the case study on the two C3I
mini-applications. The untuned versions of the Threat Analysis and Terrain Masking codes were
effectively entirely serial and so ran 8.9 and 4.9 times slower, respectively, on an MTA processor
than on a 180-MHz PA-2000 processor in the X2000. After tuning for parallelization, the same
codes were 30 and 26 times faster on a single MTA processor than before and 3.4 and 5.4 times faster
than on an X2000 processor.

Even for these relatively small mini-applications the sophisticated Tera C compiler is unable to
achieve any performance improvement through automatic parallelization. These codes contain
loops with embedded function calls and pointer references. Manual tuning by restructuring the
loops or inserting compiler directives is required to parallelize such codes.

Scalability

The results in Table 4 allow comparison of scalability on 8 processors of the MTA and a reference
computer for ten of the applications. No systematic difference is apparent. Scalability on the MTA
is much better than on the reference computer for three applications — FT, IS, and Explode - and
much worse for two others — FMM Prototype and Threat Analysis. For the other five applications -
CG, EP, MG, TPHOT, and Terrain Masking — the differences in scalability between the MTA and
the reference computer are modest or negligible.

For one more application - TRANAIR - scalability on the MTA is implicitly better than on the T90,
since parallelization of this application is so difficult on the T90 that it has not proved practical. On
the other hand, scalability of TRANAIR on the MTA is still relatively poor, and roughly three MTA
processors are required to match the speed of a single T90 processor.

Table 4 also contains sufficient information to classify MTA scalability for all 14 applications. Such
a classification is shown in Table 6, where the applications are sorted by parallel efficiency on 8
MTA processors. Where an application has results for two test problems, the better efficiency is
listed in Table 6.

This classification shows a clear difference in scalability between application classes: scalability of
kernels is appreciably better than for the mini- and large applications. Indeed, 6 out of 7 kernels
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Table 6. Scalability of each application on 8 MTA processors

Scalability Efficiency Application Application

class at 8p name class

Very good 1.00 EP Kernel
0.99 TPHOT Mini-application
0.98 DGEMM Kernel
0.94 FT Kernel
0.92 Explode Mini-application

Good 0.86 CG Kernel
0.81 IS Kernel
0.81 MG Kernel

Fair 0.71 Terrain Masking Mini-application
0.69 SAR Mini-application
0.69 FMM Prototype Large application
0.65 Linpack Kernel

Poor 0.60 TRANAIR Large application
0.50 Threat Analysis Mini-application

have good or very good scalability, while 5 out of 7 of the mini- and large applications have fair or
poor scalability. )

There are various reasons for the limited scalability on the MTA of the lowest ranked applications
in Table 6. In the case of the Threat Analysis, Terrain Masking, and SAR benchmarks the test
problems may simply be too small. For Linpack, scalability is limited by decreasing parallelism
near the end of the computation. As for TRANAIR and the FMM Prototype, these large applica-
tions are inherently more difficult to parallelize. Further tuning of them is needed and should im-
prove their scalability. Simply increasing the problem sizes for them is likely to be of little benefit.

Extrapolation of MTA performance to larger systems was considered for several applications.
However, because of frequent changes in the hardware and software environment, sufficient data
could not be collected to construct convincing models, with possibly one exception. For Explode
and its test problem, the parallel efficiency on the MTA is fit very well by Amdahl's law with a
small serial fraction of 0.013. This corresponds to a single overhead due to serial code. For the
other applications, more complicated scaling models are required. Besides serial overhead, one
would need to consider various combinations of other overheads due to load imbalance, thread
creation, memory contention, and network contention.

Overall Performance

Ultimately what is of interest is the overall performance, which can be obtained by combining sin-
gle-processor performance and scalability data. The last column in Table 4 gives the ratio of the
maximum speed on the MTA to that on the reference computer for 11 applications: all ten that were
parallelized on the reference computer plus TRANAIR. Since TRANATIR is very difficult to paral-
lelize on the T90, comparing multiple MTA processors to a single T90 processor seems fair. The
maximum speed on each computer was usually, but not always at the largest number of processors
listed.

For 4 of the 11 applications — IS, Terrain Masking, Explode, and TRANAIR - the MTA is apprecia-
bly faster than the reference high-end computer. The speed advantage of the MTA ranges from a
factor of 1.8 over the T90 for one of the TRANAIR problems to a factor of 5.4 over the X2000 for
Terrain Masking.

The maximum performance on the MTA is at the full 8 processors available, except for Terrain
Masking where performance peaks at 7 processors. By contrast, performance on the reference
computers peaks before the full configuration is reached: at 4 T90 processors for IS, at 12 X2000
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processors for Terrain Masking, and at 16 V2250 processors for Explode. In the case of IS, Explode,
and TRANAIR, the scalability advantage of the MTA contributes substantially to the overall per-
formance advantage.

For two other applications - CG and EP -~ the speed on 8 MTA processors is comparable to the
speed on 8 T90 processors. These kernel applications have similar single-processor performance
and scalability on each computer.

MTA Usability

An important goal of this project was to evaluate the overall usability of the Tera MTA. Raw per-
formance measures are more meaningful when interpreted in context of the programming effort
required to achieve them. The MTA presents a new programming model along with new hard-
ware, software, and programming tools. It is important to evaluate each.

It is convenient to consider in order:

Programmer effort and productivity,

- Effectiveness and quality of tools,

Reliability of hardware and software,

Viability of system for achieving scientific progress.

Programmer Level of Effort

Multithreading as implemented by Tera in the MTA offers a single parallel programming model,
which is the same for multiple processors as for a single processor. Programming and tuning for
multithreaded performance can be done on a single processor and then simply extended to multi-
ple processors, provided the problem contains sufficient parallelism. This simple parallelization
model was very well received by the participants in the evaluation.

By contrast, to get multiprocessor speedup on a traditional vector multiprocessor with shared
memory, one must vectorize inner loops to gain single-processor performance and then multitask
across processors. Similarly, on a distributed-memory computer built of cache-based processors,
one must tune for data locality and exploit instruction-level parallelism to get good single-
processor performance, then distribute the data and use something such as MPI to get the commu-
nication right for multiple processors. The single parallelization model of the MTA, whether for
one or many processors, is a major benefit. B

The evaluation here focused on porting and tuning existing codes rather than programming new
ones. It was found that starting from a serial formulation of an algorithm or from source code
(without MPI) suitable for a shared-memory machine often led to a straightforward port. Tuning
such codes sometimes included stripping out data-moving instructions meant to benefit machines
with cache or vector units (where data layout matters), because such instructions serve no useful
purpose on the MTA. Porting MPI codes to the MTA was avoided, since that was expected to be
fairly labor-intensive. Communication calls and work to distribute data would need to be removed
while preserving the semantics of the program.

Porting small applications to the MTA was found roughly comparable to porting them to other uni-
form shared-memory machines and easier than to distributed-memory machines (except for the
embarrassingly parallel TPHOT application). The programmer does not have to be concerned
about data distribution across hierarchical memory. With no concept of local or remote memory,
the MTA relieves the programmer of this burden.

Tuning small applications for the MTA was also found easier than on distributed-memory ma-
chines. With no data cache and no concept of data locality on the MTA (since memory addresses
are randomized across memory modules), the programmer is relieved of the responsibility of op-
timizing memory-access patterns for cache.

13




On the other hand, porting and tuning large applications to run on the MTA were found to be
much more difficult. Strict conformance of the compilers to language conventions means that just
getting large codes to compile error-free takes a long time. Extensive tuning is then required. Since
the MTA requires high levels of parallelism, more sections of serial code need to be parallelized
than on other computers, and more parallelism must be found. This, coupled with the greater
complexity of the applications, takes a long time.

Effectiveness and Quality of Tools

The MTA comes with sophisticated compilers that attempt to parallelize automatically a program
written in the traditional serial languages of Fortran, C, and C++. The compilers are powerful
tools, and the underlying technology is extremely impressive. Nevertheless, the C compiler was
found largely unable to parallelize code automatically. While the Fortran compiler does much
better, one can seldom simply compile serial code and expect good performance "out of the box."

Rather, the programmer must tune the code in a feedback loop using the following four tools:

1) Canal, a tool that produces an annotated listing of the compiled code to show what the
compiler parallelized, what it failed to parallelize, and why;

2) A set of directives that allow the programmer to “coax” the compiler to parallelize;

3) Extensions to the languages allowing explicit programming of parallel constructs;

4) Traceview, a tool that allows the user to capture and view time-dependent execution pro-
files.

These tools were found to be useful and effective. The programmer compiles the code, sees what
the compiler has done via Canal, and iterates until directives or code restructuring make the ex-
ecutable look reasonably parallel. Then the programmer runs the code with tracing enabled. If
performance is less than anticipated, Traceview will show where (usually a serial section or loop
with insufficient parallelism). The programmer then goes back to work with the compiler on the
problem area. :

The feedback loop was seriously disrupted during the evaluation period by system and compiler
irregularities. These made it difficult to separate bugs introduced during tuning from those in the
operating system or compiler. Compounding this were frequent software upgrades. These up-
grades generally added functionality and fixed some problems, but often introduced other prob-
lems. Moreover, researchers had to recompile and rerun performance tests after most upgrades.

Also, execution times were not always reproducible. Because system resources are shared cycle-
by-cycle on the MTA, the execution of one program is very sensitive to the activities of another,
including those spawned by the operating system. As the load on the machine increased, tuning
became more difficult, and dedicated time slots were essential for getting useful performance in-
formation. ’

Additional tools provided by Tera include libraries for common mathematical operations, such as
the BLAS. Their usefulness in the evaluation was limited, in part because of their performance
varied significantly as the compiler evolved.

Reliability of Hardware and Software

As noted in Table 1, Unix was not available on the MTA until September 1998. Before then, use of
the machine was restricted to relatively few users, primarily running small applications.

With the availability of Unix, serious work began on all of the applications discussed here. Even
still, various system problems made use of the MTA difficult. Of particular concern were

- operating system instability,
— lack of system swapping,

— compiler bugs and "features,"
- slowI/O.
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These problems have been significantly mitigated in recent months, but further improvement is
needed.

The system has become much more stable, with the mean time between interrupts growing from
one to many hours. Swapping was recently implemented, which should eliminate the memory
allocation problems that were common during the evaluation. The compilers continue to evolve, as
many bugs are fixed, and a few new ones are introduced. I/O by ftp to and from a workstation
remains slow, but a workaround through faster 1/O paths is available for large files.

Executables continue to be cross-compiled on a Sun workstation and then moved by ftp to the
MTA. This is tolerable with the recent improvements in system stability and 1/O performance.
Native compilation on the MTA recently became available, but is very slow because it runs primar-
ily in serial mode.

Viability of System for Scientific Progress

The MTA shows much promise. Indeed, it runs some science and engineering codes as fast or
faster than any other supercomputer at SDSC, as shown here and in a companion NSF-funded
evaluation. However, because of the previously mentioned reliability problems, the MTA has not
yet been used for significant computational science. The work so far has focused on software de-
velopment, evaluation, and computer science studies. A more robust software environment is
needed to support production use.

Multithreaded Scheduler and Compiler Studies

Several studies were carried out related to job scheduler and compiler effectiveness on multi-
threaded computers.

Symbiotic Job Scheduling for High Throughput

Multithreaded computers not only provide an opportunity for increased performance when exe-
cuting a single application, but they also provide for increased system throughput. The paraliel
profiles of applications vary substantially with time. Sometimes a parallel application uses hun-
dreds or thousands of threads, while at other times it can only effectively use one or a few threads.

Multithreaded computers with their lightweight contexts and ability to easily associate contexts
with different applications provide a realistic opportunity to share a large computing resource
more effectively; parallel peaks in one application's profile can fill parallel valleys in another’s pro-
file.

The term symbiosis has been adopted to refer to the increase in throughput that can occur when two
or more jobs simultaneously finish more quickly than when run in succession on a multithreaded
computer, even on a single processor. This is possible on the Tera MTA, for example, if streams
unused by one job can be used by a coscheduled job.

Improved throughput via symbiosis has been demonstrated on the MTA for various combinations
of jobs consisting of the NAS Parallel Benchmark kernels. Details are given in one of the case
studies and in Ref. [20]. The principal findings are the following:

- Serial codes are highly symbiotic with each other and with parallel codes on the MTA.
Thus, poor serial performance on the MTA need not impact system throughput as long as
serial jobs are coscheduled. '

— Highly tuned codes are less symbiotic than untuned versions of the same codes on the MTA.
Because a parallel section cannot acquire streams released by another parallel section, highly
tuned parallel codes with few serial sections can "throttle" each other and lead to reduced
throughput or "negative" symbiosis. A more dynamic resource allocation strategy is being
designed to address this issue.
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Task-Based Parallelism in Irregular Applications

Parallel computers, including the Tera MTA, depend heavily on compiler-generated parallelism.
Currently, compilers rely principally on loop-level parallelism (LLP), where a program benefits
from executing different iterations of the loop in different threads. However, a large number of
applications have little or no LLP available. For such irregular applications another source of par-
allelism is needed, namely task-level parallelism.

Task-level parallelism arises when a sequence of instructions (a task) is found independent of
neighboring instructions and so can be executed in parallel. The task could be, for example, a pro-
cedure call. LLP is a special case of task-level parallelism if the task is a single loop iteration.

One project study has investigated leaf procedures (procedures that make no other procedure
calls), non-leaf procedures, and entire loops as possible task boundaries for compilation. The as-
sumption is made that some speculation can be tolerated; that is, a mechanism exists for resolving
incorrect speculation when the task is not, after all, independent. This allows speculative paralleli-
zation of code when there is a high probability, but no guarantee of independence.

Because the biggest barrier to detecting independence in irregular codes is memory disambigua-
tion, a profile-based tool [21] has been written to identify memory-independent tasks, specifically
tasks that have no memory-dependence conflicts with the preceding code. Such tasks can be exe-
cuted earlier than they appear in the source code, in parallel with some of the preceding code. The
tool provides information that could be used in several architectures, including multithreaded
ones, to identify possible sources of task-level parallelism. For varying assumptions about the un-
derlying architecture, from 7 to 22 percent of the instructions was found to be within tasks that are
memory independent [22]. This is on a set of irregular applications, for which traditional methods
of parallelization are very ineffective.

Thread-Level versus Instruction-Level Parallelism

All modern pipelined processors require the compiler to find independent instructions that can be
in the pipeline simultaneously - so-called instruction-level parallelism (ILP). In multithreaded ar-
chitectures, such as the Tera MTA and Simultaneous Multithreading (SMT) architecture, there is a
competing requirement of finding thread-level parallelism (TLP) - independent instructions to
make up the separate threads of control. The compiler must decide how much of the available par-
allelism to "spend" on each of these two requirements.

A detailed examination [23] has been made of the tradeoff between using parallelism for ILP and
TLP on an SMT architecture, where the problem is particularly difficult (even more than on the
MTA) due to the confounding issue that threads share registers and cache. Results obtained sug-
gest that there is no easy answer, but that the optimal choice needs to be based on multiple criteria,
including the communication-to-computation ratio, cache and TLB locality, the demand for register
names, and the demand for processor resources.

MTA Compiler Evaluation

Throughout the project the quality of object code produced by the optimizer of the Tera compilers
was evaluated. The optimizer faces a formidable challenge, since it must generate code that ex-
ploits parallelism at two levels: ILP and TLP. At the thread level, it must find enough parallelism
to use a sufficient number of streams to hide memory latency. Using both Canal reports and the -
generated assembly code, the optimizer's results were examined for kernels from linear algebra,
fluid dynamics, fast Fourier transforms, and seismic migration applications.

In general, the results are state of the art and most impressive. The optimizer often generates opti-
mal code, meaning that it issues one memory reference per instruction (the maximum possible) and
effectively uses software pipelining to achieve lookahead 7 (again the maximum possible). The
generated code also uses an effective and low-overhead variant of dynamic scheduling to distribute
iterations of a parallel loop to processors. To increase parallelism the optimizer fuses multiple lev-
els of nested loops. It can fuse most rectangular and triangular loop nests. In cases where fusion is
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not possible, it may be necessary to generate multiple compiled variants and have a mechanism
that chooses the appropriate variant at run time.
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CASE STUDIES

Linear Algebra Kernels

Robert Leary
San Diego Supercomputer Center

Linear algebra is central to many scientific computations. Accordingly, the performance of various
dense linear algebra kernels was measured, optimized, and analyzed on up to eight processors of
the Tera MTA. Performance of these kernels was also compared with that on a single processor of
the Cray T90.

DGEMM - Matrix-Matrix Multiply

The limiting floating-point performance on the MTA for any linear algebra kernel in which addi-
tions and multiplications are asymptotically balanced is 2 flops/clock (or 520 Mflops per processor
for the current 260-MHz clock rate). Such balanced kernels include the vector dot product, the
DAXPY vector operation, matrix-vector multiplication, and conventional matrix-matrix multiplica-
tion. Higher rates can only be achieved with parallel use of the fused multiply-add and the sepa-
rate hardware add operations, thus implying an unbalanced kernel with more additions than mul-
tiplications.

On many computers the highest sustained floating point performance is achieved with a conven-
tional matrix-matrix multiply, usually coded in assembly language and highly tuned to the specific
hardware. Interestingly, on a single MTA processor a simple Fortran matrix-matrix kernel written
in the traditional row-by-column form using a dot-product inner loop achieves 490 Mflops (94% of
theoretical peak) for square matrices of order N>1,000. The R, value at which half the theoretical
peak is obtained occurs near N=30. The Canal analysis tool indicates that the kernel loop is indeed
achieving 16 floating-point operations per eight memory references, consistent with 2 flops/cydle.

Similarly, the best observed matrix-vector multiplication coding is the most primitive Fortran code
with a dot-product inner loop. Here Canal indicates 16 flops per 9 memory references, or a limiting
rate of 8/9 (89%) that of matrix-matrix multiplication. The observed rate on one MTA processor for
a square matrix with N=1,000 is 435 Mflops, or 89% of the observed matrix-matrix multiplication
rate, in excellent agreement with the Canal analysis.

All optimization attempts using the conventional loop transformations (e.g., unrolling, blocking, or
use of vector temporary arrays) that are applicable to vector and cache-based scalar processors
proved counter-productive. This indicates that the compiler is producing essentially optimal code
from the simplest Fortran kernels.

The first two rows of Table A-1 compare single-processor performance on the MTA and T90 for a
matrix-matrix multiply of order N=2,000 using DGEMM, a routine from LAPACK [A-1]. With ap-
propriate coding, DGEMM achieves close to the practical peak on each machine. The DAXPY for-
mulation is used on the T90, while the dot product formulation is used on the MTA. The T90 re-
quires inner-loop parallelism, while the MTA prefers (but does not require) outer-loop parallelism.
This shows that codes that are ported from a vector machine to the MTA may require restructuring
to achieve optimal performance. Table A-1 further illustrates that the MTA will not outperform the
T90 on highly vectorizable codes. '

To execute on multiple processors, MTA code needs to be compiled in crew mode as opposed to
fray mode, which is restricted to a single processor. Initial tests showed that crew code for
DGEMM ran significantly slower on a single processor than did fray code. This is apparent from
the third row of Table A-1, where the crew interleaved speed is 440 Mflops, as compared to 490
Mflops for the fray speed. This discrepancy was eventually traced to differences in the algorithm
used to schedule threads.




Table A-1. Performance results for DGEMM with N=2,000

Computer & Processors Speed

scheduler option used / total ~(Mflops) Speedup Efficiency

T90 1/ 1,580

MTA fray 1/ 4 490

MTA crew interleaved 1/ 4 440 1.00 1.00
2/ 4 875 1.99 0.99
4/ 4 1,744 3.96 0.99

MTA crew dynamic 1/ 4 487 1.00 1.00
2/ 4 953 1.96 0.98
4/ 4 1,902 391 0.98
1/ 8 495 1.00 1.00
2/ 8 980 1.98 0.99
4/ 8 1,959 3.86 0.99
8/ 8 3,870 7.82 0.98

At the time of the initial DGEMM runs, the default was dynamic scheduling for fray mode and in-
terleaved scheduling for crew mode. This turned out to be a poor choice. When a compiler direc-
tive was inserted to force dynamic scheduling, crew mode performance improved to 487 Mflops.
This is essentially the same as in fray mode and demonstrates very little overhead for running in
crew mode.

Interleaved scheduling gives a fixed number of loop iterations to each thread. Dynamic scheduling
causes an executing thread to ask for more work when it finishes its current allotment. Dynamic
scheduling costs a bit more in terms of software overhead, but results in better load balancing if the
work of distinct loop iterations is variable. As a result of the experience with DGEMM (and other
kernels), dynamic scheduling has now been made the default in the MTA compiler.

For both scheduling algorithms the scalability of DGEMM on the MTA is excellent. This is appar-
ent from the multiprocessor results shown in Table A-1. The first sets of data are for the 4-
processor MTA system, while the last set of data is for the 8-processor system that was installed
late in the project. For the same number of processors, the results are 2 to 3% better on the 8
processor system than on the 4-processor system.

Linpack

Linpack [A-2, A-3] solves dense systems of linear equations using routines from the BLAS. For the
N=100 test, no tuning is allowed, and the level 1 BLAS are used. For the larger, N>1,000 tests,
tuned versions of the level 2 and level 3 BLAS are used, with the majority of the execution time
spent in DGEMM. Table A-2 shows comparative performance for several Linpack tests on the
MTA and T90.

For the N=100 test (without tuning), the DAXPY version of matrix-matrix multiply is used. This is
not well suited to the MTA. This and the lack of sufficient parallelism in this small problem lead to
disappointing results. Both the MTA and T90 run well below peak, but the MTA performance is
especially low. ’

For the larger Linpack problems, performance on both the MTA and T90 is much better. However,
as suggested by the results in Table A-2, the asymptotic speed is approached much more slowly
with increasing N on the MTA than on the T90.

For the larger problems, the dominant DGEMM matrix-matrix multiply has dimensions M by NB
and NB by M, where NB is a fixed but tunable blocking factor, and M decreases from a starting size
of N in decrements of NB as the computation progresses. With some experimentation, the best
blocking size on the MTA was found to be about NB=100 for large matrices of order N=7,000, re-
sulting in a speed of 425 Mflops at this size. (For reference, the N=100 matrix multiply DGEMM
speed is 460 Mflops.) For smaller matrices, such as in the N=1,000 Linpack benchmark, the optimal.
blocking size was considerably smaller at NB=40, and the best speed observed was 288 Mflops.
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Table A-2. Performance results for Linpack

Test Computer & Processors Speed

problem scheduler option used / total  (Mflops) Speedup Efficiency
N=100 untuned T90 1/ 464
MTA fray 1/ 4 29
N=1,000 T90 1/ 1,441
MTA fray 1/ 4 288

MTA crew interleaved 1/ 4 241 1.00 1.00

2/ 4 334 1.39 0.69

4/ 4 421 1.75 0.44

MTA crew dynamic 1/ 4 278 1.00 1.00

2/ 4 418 1.50 0.75

4/ 4 546 1.96 0.49

1/ 8 232 1.00 1.00

2/ 8 332 1.43 0.72

4/ 8 45 1.92 048

8/ 8 551 238 0.30
N=4,000 T90 1/ 1,550
N=7,000 MTA fray 1/ 4 425

MTA crew interleaved 1/ 4 374 1.00 1.00

2/ 4 728 1.95 0.97

MTA crew dynamic 1/ 4 412 1.00 1.00

2/ 4 761 1.85 0.92

4/ 4 1,290 3.13 0.78
N=10,000 T90 1/ 1,556
MTA crew interleaved 4/ 4 1,353

MTA crew dynamic 1/ 8 411 1.00 1.00

2/ 8 777 1.89 0.95

4/ 8 1,359 3.31 0.83

8/ 8 2,124 5.17 0.65

MTA performance is evidently quite sensitive to small regions of code where less than optimal par-
allelization can be achieved. Such regions occur in the final stages of dense matrix factorization
and in the various Level 1 and Level 2 BLAS routines that are employed in addition to the
dominant Level 3 DGEMM kernel. The proportion of time spent in such regions decreases with N,
thus accounting for the increase in performance with N. However, the difference between the
N=1,000 and N=10,000 performance is much larger than that on the T90, where the difference is less
than 10%. This indicates a heightened sensitivity of the MTA to such effects.

The change to dynamic scheduling also improved the Linpack results, since DGEMM is the domi-
nant computational kernel. For example, for the N=1,000 case, the one-processor crew results im-
proved by 15% from 241 to 278 Mflops on the 4-processor MTA. Some of the improvement also
appears to be related to improved performance of routines other than DGEMM, including the Tera
BLAS Level 1 and 2 library routines.

The move from the 4-processor MTA to the 8-processor MTA had little effect on the Linpack speed
per processor for the N=10,000 case, but actually decreased the speed per processor by 20 to 25%
for the N=1,000 case. The reason for this anomaly is unknown, but is presumably due to some
compiler change on the 8-processor system that affects part of the test code other than DGEMM.
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NAS Parallel Benchmark Kernels

Allan Snavely, Jay Boisseau, Larry Carter, Kang Su Gatlin,
Amit Majumdar, Laura Nett, and Nick Mitchell
San Diego Supercomputer Center &
Computer Science and Engineering Department
University of California, San Diego

John Feo and Brian Koblenz, Tera Computer

Performance of the Tera MTA and Cray T90 has been compared for the NAS Parallel Benchmark
kernels. Such a comparison is useful because the T90 shares important attributes with the MTA: an
absence of memory hierarchy, a sophisticated automatic parallelizing compiler, and a processor
architecture custom designed for high performance computing. These attributes offer the possibil-
ity of a simpler, shared-memory programming model than the message-passing model common on
distributed-memory computers. Thus, the evaluation also included an assessment of the effort re-
quired to program and tune programs for the MTA.

Processor Characteristics

To facilitate comparison of the MTA and T90, some pertinent processor characteristics are given in
Table B-1.

Table B-1. Processor characteristics of the T90 and MTA

Characteristic Cray T90 Tera MTA
Clock speed (MHZ) 440 260
Practical peak flops/clock 4 2
Practical peak Mflops 1,760 520
Memory accesses per clock 2 loads + 1 store 1
Special registers 8 128-element vector registers 128 32-register streams

NAS Parallel Benchmarks (NPBs)

The NAS Parallel Benchmarks [B-1] consist of five kernels and three mini-applications in several
problem sizes. The latest versions of the benchmarks are NPB 2.3 with MPI-based (parallel) source
code and NPB 2.3-serial with single-processor (serial) source code. The investigation here consid-
ered only the

— five kernels,

~ 2.3-serial source code, which is suitable for machines such as the T90 and MTA that rely on
the compiler to do parallelization,

— Class A and B sizes (except for one Class W case).

Various levels of tuning were applied to each kernel on both the MTA and T90 to improve per-
formance. Tuning on the MTA was done primarily on a single processor to achieve effective mul-
tithreading, whereas tuning on the T90 was done primarily on multiple processors to achieve ef-
fective multitasking. In some instances the T90 tuning resulted in lower single-processor perform-
ance.

Three levels of tuning were applied on the MTA (beyond the initial, untuned level):
Level 0: no tuning;
Level 1: minimal tuning to get major loops parallel (e.g., by inserting pragmas);

Level 2: standard tuning;
Level 3: heroic tuning, which requires deep insight into algorithm and/or architecture.
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Level 1 was conducted without feedback from actual timings. Levels 2 and 3 involve the standard
feedback loop of profiling, locating bottlenecks, and reprogramming. Introducing these levels al-
lows quantification of the effort spent in tuning and the performance gains achieved relative to the
effort expended.

All five kernels were tuned to Level 3, heroic tuning, on the MTA. Somewhat less tuning effort was
invested on the T90 than on the MTA. Given the more mature software environment on the T90,
the final tuned results are probably reasonably comparable in terms of the ultimate performance
achievable on each machine for a particular kernel.

Table B-2 shows the performance of the five kernels of Class A size on the T90 and MTA at the two
tuning extremes (except for one Class W case). Tuned results are also presented for two different
MTA configurations - with 4 and 8 processors — and for the Class B size in several cases. Discus-
sion of these results follows, kernel by kernel. Early versions of these results are presented in Ref-
erences [B-2] to [B-5].

Table B-2. Results for NPB 2.3-serial kernels

Kernel Computer Processors Speed (Mflops
& size & tuning - used/total or Mops*) Speedup  Efficiency
CGClass A T90 untuned 1/ 178
T90 tuned 1/ 173 1.00 1.00
2/ 291 1.68 0.84
4/ 568 3.28 0.82
8/ 960 5.55 0.69
MTA untuned 1/ 4 127
MTA tuned 1/ 4 171 1.00 1.00
2/ 4 331 1.94 0.97
4/ 4 596 3.49 0.87
1/ 8 164 1.00 1.00
4/ 8 619 3.77 0.94
8/ 8 939 5.73 0.72
CGClass B T90 tuned 1/ 202 1.00 1.00
2/ 337 1.67 0.83
4/ 639 3.16 0.79
8/ 1,201 5.95 0.74
MTA tuned 1/ 8 174 1.00 1.00
8/ 8 1,201 6.90 0.86
EP Class A T90 untuned 1/ 6.84 *
T90 tuned 1/ 6.84 * 1.00 1.00
2/ 13.71 * 2.00 1.00
4/ 27.36 * 4.00 1.00
8/ 54.61 * 7.98 1.00
MTA untuned 1/ 4 168 *
MTA tuned 1/ 4 7.57 * 1.00 1.00
2/ 4 14.85 * 1.96 0.98
4/ 4 29.50 * 3.90 0.97
1/ 8 757 * 1.00 1.00
4/ 8 30.38 * 4.01 1.00
8/ 8 61.02 * 8.06 1.01
EP Class B MTA tuned 1/ 8 751 * 1.00 1.00
8/ 8 60.35 * 8.04 1.00
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Table B-2. Results for NPB 2.3-serial kernels (continued)

Kernel Computer
& size & tuning

FT Class A T90 untuned
T90 tuned

FT Class W MTA untuned
FT Class A MTA tuned

FT Class B MTA tuned

IS Class A T90 untuned
T90 tuned for 4p

T90 tuned for 8p
MTA untuned
MTA tuned

\
ISClass B MTA tuned

MG Class A T90 untuned
T90 tuned

MTA untuned

MTA tuned

MG Class B MTA tuned

CG (Conjugate Gradient)

Processors Speed (Mflops
used/total or Mops*) Speedup  Efficiency

1/ 164 :

1/ 696 1.00 1.00
2/ 1,312 1.89 0.94
4/ 2,343 3.37 0.84
8/ 3,768 541 0.68
1/ 4 28

1/ 4 187 1.00 1.00
2/ 4 350 1.87 0.94
4/ 4 701 3.75 0.94
1/ 8 187 1.00 1.00
4/ 8 754 4.03 1.01
8/ 8 1,421 7.60 0.95
1/ 8 187 1.00 1.00
8/ 8 1,408 7.53 0.94
1/ 74 *

1/ 0 1.00 1.00
2/ 81 * 1.93 0.96
4/ 164 * 3.90 0.98
8/ 160 *

1/ 4 61 *

1/ 4 110 * 1.00 1.00
2/ 4 214 * 1.95 0.97
4/ 4 366 * 3.33 0.83
1/ 8 112 * 1.00 1.00
4/ 8 421 * 3.76 0.94
8/ 8 699 * 6.24 0.78
1/ 8 112 * 1.00 1.00
4/ 8 440 * 3.93 0.98
8/ 8 724 * 6.46 0.81
1/ 563

1/ 556 1.00 1.00
2/ 1,106 1.99 0.99
4/ 2,170 3.90 0.98
8/ 3,860 6.94 0.87
1/ 4 138

1/ 4 184 1.00 1.00
2/ 4 369 201 1.00
4/ 4 702 3.82 0.95
1/ 8 194 1.00 1.00
4/ 8 738 3.80 0:95
8/8 - 1,262 6.51 081
1/ 8 208 1.00 1.00
8/ 8 1,352 6.50 0.81

Tuned CG Class A performance is nearly the same on one processor of either the T90 or MTA.
Tuning increased MTA performance from 127 to 171 Mflops (on the 4-processor machine), whereas
T90 performance decreased slightly from 178 to 173 Mflops on one processor when multitasking
was implemented. On multiple processors, the MTA initially scales this kernel better than the T90,

but by 8 processors the performance is again nearly the same on either machine.
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The inner loop of CG does three memory references and two floating-point operations. Because the
MTA can only do one memory reference per cycle, any tuning that can increase the ratio of float-
ing-point operations to memory operations will have a significant impact. One of three memory
values read per loop iteration is an index value with a known upper bound. Knowing this upper
bound, it is possible to pack three index values into a single 64-bit word in the preprocessing phase
of CG (which is not timed when reporting performance results). This reduces the ratio of memory
references to floating-point operations from 3/2 to 7/6 and should lead to a performance im-
provement of a factor of 1.29, which is in good agreement with the observed factor of 1.35
(=171/127). In fact, there is an added benefit to reducing the memory intensity of a loop; conten-
tion on the memory network is reduced, and thus effective memory latencies are shortened.

Single-processor tuning of CG on the MTA can be summarized as follows:

Level 0: CG, out of the box, achieved 127 Mflops on one processor of the MTA. The inner loop is
highly efficient: two flops per three instructions with three memory references. This is as efficient
as one could expect with the inner loop expression of sum = sum + a(k)*p(colidx(k)), which is ex-
actly two floating-point operations and three memory accesses counting the indirection.

Level 1: No changes were required to the source to make the compiler parallelize the major loops.
Level 2: No changes at this level were attempted.
Level 3: As described before, bit packing increased the speed to 171 Mflops.

Table B-2 contains Class A results on two MTA configurations: the 4-processor system used for
tuning and the 8-processor system that became available late in the project. Scalability is as good or
better for all kernels on the larger system. This is presumably due to a combination of greater ag-
gregate memory bandwidth and an improved compiler on the larger system. For CG the parallel
efficiency at 4 processors increased from 87% to 94% going from the 4-processor to the 8-processor
system. At the same time the single-processor speed decreased by 4%, possibly due to an offsetting
compiler change.

Table B-2 also contains Class B results on 8 processors of both the T90 and MTA. Scalability is
much better for CG on the larger Class B problem, with the efficiency at 8 processors improving
from 72% to 86%. The improvement in Class B scalability on the T90 is smaller, but the single-
processor speed is higher, so the final 8-processor speeds are the same on both machines.

EP (Embarrassingly Parallel)

EP performs well and scales nearly perfectly on both the T90 and MTA after tuning. Absolute per-
formance is 11% better on the MTA than on the T90 on both one and eight processors. To obtain
multithreaded code on the MTA, it is necessary to use the shared-memory version of the random
number generator that comes with the NPB distribution. :

Single-processor tuning of EP on the MTA can be summarized as follows:

Level 0: When the study began, the outer loop did not parallelize, so the untuned code ran in serial
and very slowly, at 0.12 Mops. Subsequent improvements to the compiler allowed the outer loop
to parallelize, resulting in a dramatic increase in speed to 1.68 Mops.

Level 1: Five lines were changed. The original code computed a vector of random numbers with
each call to the generator. Separate storage needs to be allocated for each thread in a shared-
memory parallelization. This was accomplished with two compiler directives and three modifica-
tions to declarations. Performance then increased to 2.39 Mops.

Level 2: Changes to five more lines of code eliminated a memory hot spot: a global variable loca-

tion that multiple threads update. Since it is not logically a synchronization point, replication was
used to relieve contention and increase performance by more than a factor of 2.
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Level 3: Inlining some functions boosted performance to 7.57 Mops. Inlining might be considered
Level 2, but assistance was provided by expert Tera staff, so this is counted as “heroic” tuning.

Going from the 4-processor to the 8-processor MTA, the efficiency improved by 3% on 4 processors. .
No increase in efficiency was observed in going from Class A to Class B.

FT (Fourier Transform)

FT is highly vectorizable, so the T90 outperforms the MTA by about a factor of 3.7 for tuned code
on a single processor: 696 Mflops versus 187 Mflops. Scalability on the MTA is better than on the
T90, so at 8 processors the T90 is only 2.7 times faster than the MTA.

The original version of the code had only 16-way outer-loop parallelism. Tuning for the MTA in-
volved modifying the code to do multiple butterflies in parallel. Single-processor tuning of FT on
the MTA can be summarized as follows:

Level 0: With no lines changed, the code encountered an "alignment error" and failed to complete
for the Class A problem size. However, the smaller Class W size did run correctly, with a speed of
28 Mflops. ’

Level 1: No changes were required to make major loops parallel (agéin, for the Class W size).

Level 2: Loops were removed that copied 16 1-D transforms at a time into contiguous storage be-
fore performing vector transforms. Such copying is beneficial on a vector computer, but is pure
overhead on the MTA. With these loops removed, the Class A size executed correctly, and per-
formance improved to 118 Mflops.

Level 3: By restructuring loops to expose more outer loop parallelism, performance increased to
187 Mflops.

When the tuned code was run on 4 processors of the 8-processor MTA, the efficiency improved to
101%, as compared to 94% on the smaller 4-processor system. No significant change in MTA speed
was noted in going from Class A to Class B size.

IS (Integer Sort)

IS makes use of memory indirection. The MTA handles this well, achieving a single-processor
speed of 110 Mops after tuning. Without tuning, the T90 does a credible job of vectorization to give
74 Mops on a single processor.

IS scales reasonably well on the MTA, but not on the T90. To parallelize IS on the T90 a work array
was duplicated on each processor and hard-coded for a particular number of processors. This in-
creased the work, leading to a significant drop in speed on one processor and only a net speedup of
2.3 on four processors over the untuned value. The implementation for 8 T90 processors showed
no further improvement over the 4-processor version. Overall, the MTA is the clear winner and
more than 4 times faster than the T90 at 8 processors.

Single-processor tuning of IS on the MTA can be summarized as follows:
Level 0: With no lines changed the speed was 61 Mops.
Level 1: No changes were needed to make problem parallel.

Level 2: Removing some copy loops that were not beneficial to a shared-memory machine required
changing five lines of code. Performance improved to 73 Mops.

Level 3: Bitpacking, similar to the heroic optimization of CG, increased the performance to 112
Mops.




When the tuned code was run on 4 MTA processors, the efficiency increased from 83% to 94% after
the MTA was upgraded from 4 to 8 processors. This shows the importance of additional memory
bandwidth for a memory-intensive code such as IS. When the problem size increased from Class A
to Class B, a modest 3% performance improvement was noted on 8 MTA processors.

MG (Multigrid)

MG is similar to FT in that it is highly vectorizable and very suitable to the T90. Accordingly, the
T90 outperforms the MTA by a factor of 3 for tuned code on a single processor: 556 Mflops versus
184 Mflops. Scalability on both the T90 and MTA is similar, so the T90 is still a factor of 3 faster
than the MTA at 8 processors.

Tuning for the MTA involved code restructuring to avoid register spills. Each thread on the MTA
has access to only 32 floating-point registers so efficient register allocation is important. Single-
processor tuning of MG on the MTA can be summarized as follows:

Level 0: With no lines changed the speed was 138 Mflops.
Level 1: No changes were required to make major loops parallel.

Level 2: Manually fusing loops that perform a 27-point stencil computation resulted in register
spillage. A lot of effort was expended here without achieving a performance gain.

Level 3: Further code manipulation by expert Tera staff fused some loops and eliminated some
data copying to increase the speed to 184 Mflops.

For the tuned code run on 4 MTA processors, no improvement in efficiency was observed going
from the 4-processor to the 8-processor system. However, the absolute performance improved
slightly, by 5%. When the problem size increased from Class A to Class B, performance improved
by 7% on 8 MTA processors. ’

Conclusions

For each Class A kernel, Figure B-1 shows the tuned speed per processor on the T90 and MTA at 8
processors normalized to the best single-processor T90 speed. For the T90 this is just the parallel
efficiency, which is reasonably good for all of the kernels except IS.

Comparing the MTA with the T90 at 8 processors, the two machines are essentially the same speed
for CG and EP; the T90 is significantly faster for FT and MG; and the MTA is significantly faster for
IS. As regards efficiency at 8 processors, it is better on the MTA for CG, FT, and IS, about the same
on each machine for EP, and better on the T90 for MG.

The MTA cannot outperform the T90 processor to processor on codes with long vectors. However,
the MTA can perform respectably on these codes and scale them well. The MTA can also exploit
parallelism at higher levels to achieve performance on codes that do not perform well on the T90.
‘The MTA thus offers a wider range of parallel options than the T90.

The upgrade of the MTA from 4 to 8 processors more than doubled its aggregate memory band-
width. This, along with associated compiler changes, improved the 4-processor performance of all
of the kernels on the upgraded machine compared to the smaller machine. The improvement was
most dramatic for IS, which is highly memory intensive. This shows the importance of memory
bandwidth on the MTA. It further suggests that memory bandwidth may be critical for scaling
memory-intensive codes on large MTA configurations.

In another set of tests, the problem size was increased from Class A to Class B on the 8-processor

MTA. This improved scalability for two of the kernels and absolute performance for four of the
kernels.
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Figure B-1. Tuned speed per processor for each machine at 8 processors normalized to best single-

processor T90 speed, all for Class A kernels.

The MTA was found to be as easy to program as the T90 and much easier to program than distrib-
uted-memory machines. The MTA is able to exploit inner-loop (vector) parallelism but prefers
outer-loop parallelism. Indeed, a good tuning strategy on the MTA is to find parallelism and move
it to an outer loop.
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TPHOT - Monte Carlo Photon Transport

Amit Majumdar
San Diego Supercomputer Center

Introduction

TPHOT is a time-dependent Monte Carlo code that simulates photon transport in a plasma. Vari-
ous versions of THPOT have been used for several years to examine and benchmark parallel Monte
Carlo particle transport on a variety of computers [C-1 to C-4].

TPHOT has been implemented and parallelized on the Tera MTA and Cray T3E at SDSC using dif-
ferent parallelization strategies. The code and strategies are described here, along with the results
obtained on up to 8 MTA processors and 64 T3E processors.

Description of TPHOT

Monte Carlo particle transport simulates the behavior of particles by drawing random samples
from appropriate probability distributions. A source particle is generated from a known distribu-
tion with a random position and velocity (or energy and direction for a photon). Given these parti-
cle characteristics and the properties of the medium in which the particle is traveling, transport is
simulated by sampling from additional probability distributions describing the interaction of the
particle with the medium. The particle moves in a straight line between interactions, and the
simulation proceeds until the particle is absorbed or escapes.

TPHOT simulates photon transport within a high-density, high-temperature plasma in two-
dimensional r-z geometry. The plasma is divided into material zones, each with its own composi-
tion, temperature, and density. Each zone is a simple volume of revolution, bounded by at most
four surfaces.

Photons are sampled uniformly and isotropically within each zone from a Planckian energy spec-
trum. The energy range is discretized into several energy groups. The photons that are emitted
within each zone and energy group are followed through the plasma until they are absorbed, un-
dergo Thompson scattering, escape, or reach "census” at the end of a time step. The sequence of
movements and interactions of each photon during a time step is referred to as its "history".

In TPHOT, the geometry and material properties are constant in time, and time stepping is used
only to determine when results are output to a census file. In a more general case, one might model
coupled photon transport and hydrodynamics, in which case the geometry and material properties
could change from one time step to another.

The photon transport computation is a triply-nested loop over zones, energy groups, and photons.
Relevant pseudo-code for these loops follows.

do i = 1, number_ of_ zones
do j = 1, number_of_ energy_groups

number_of_photons_in_i_and j = function of (edep)
do k = 1, number_of_ photons_in_i_and j
- call multiple subroutines to track the photon history
end do
end do
end do

The variable edep, which is the energy deposited in each zone and energy group, is a function of
the Planckian energy spectrum, the material properties, and the volume of each zone. :




Since the photons do not interact, their histories are independent and can be computed simultane-
ously. This allows an embarrassingly parallel implementation, which should exhibit nearly perfect
linear speedup, provided that 1) the workload can be balanced by a suitable assignment of photons
to processors, and 2) each processor has ready access to the material properties of all the zones
(which requires that the zone data fit in local memory on a distributed-memory computer). To ob-
tain reproducible results, each processor should also generate a non-overlapping, independent se-
quence of random numbers.

Parallelization by Zones on the MTA

Since the computations across zones are independent and the Tera MTA prefers outer-loop paral-
lelism, the first implementation on the MTA parallelized only the outermost zone loop. The inner
loops include many subroutine calls and shared accumulators, so the Tera compiler was not able to
parallellize the outermost loop automatically. Thus an ASSERT PARALLEL directive and several
ASSERT LOCAL directives were inserted to identify the local variables. Moreover, each global tally
(for the number of photons escaped, number of photons absorbed, etc.) had to be preceded with an
UPDATE directive to insure determinacy. Insertion of the directives was time consuming and error
prone. The parallel pseudo-code, including the aforementioned directives in bold, is as follows.

CSTERA ASSERT PARALLEL
do i = 1, number of zones
CSTERA ASSERT LOCAL (names of local variables)
do j = 1, number_ of energy groups

number_of photons_in i_and_j = function of (edep)
do k = 1, number_of photons_in_i_and_j
call multiple subroutines to track the photon history
(CSTERA UPDATE directive before each tally statement)
end do
end do
end do

Parallelization by Zones and Energies on the MTA

As will be seen shortly, parallelization over zones only does not scale well on the MTA for the test
problem. Evidently, there is insufficient parallelism to get good load balance. Hence parallelism
was increased by collapsing the two outer loops over zones and energies into a single loop. Also,
the order of processing the zones was reversed, since the number of photons in a zone is propor-

tional to its size, and the size of the zones grows with index value for the test problem. The result-
ing pseudo-code is as follows.

C$TERA ASSERT PARALLEL
do ij = number of_zones * number_of energy groups - 1, 0, -1
CSTERA ASSERT LOCAL (names of local variables)

-

i = (ij/ number of_ energy groups) + 1
J = 1ij - number_of_ energy groups*(i - 1) + 1

number_of photons_in_ij = function of (edep)
do k = 1, number_of photons_in ij
call multiple subroutines to track the photon history
(CSTERA UPDATE directives before each tally statement)
end do
end do
end do




Parallelization by Photons on the T3E

The parallel version of TPHOT developed for the Cray T3E uses the MPI library, which is appro-
priate for distributed-memory machines such as the T3E. Moreover, the parallelization strategy
was different from that used on the MTA. If NP is the number of processors available, then the
parallel pseudo-code for the computation-intensive loops is as follows, with the modified part of
the pseudo-code in bold letters.

do i

= 1, number_of_ zones
do j =

1, number_ of_ energy groups

number of photons_in_i_and j = function of (edep/NP)
do k = 1, number of_ photons_in_i_and j
call multiple subroutines to track the photon history
end do
end do
end do

call MPI _REDUCE(...) to add up tally variables.

This code is executed by each processor. The net effect of dividing edep by NP is that each of the
NP processors simulates 1/NP of the total number of photons. This effectively parallelizes across
the number of photons. -

At the end of the simulation one of the processors needs to perform multiple reduction operations
(such as the MPI_REDUCE summation operation) to add up various global tallies (for the number of
photons escaped, number of photons absorbed, etc.). Besides these reduction operations at the end,
no other MPI library calls are required other than the MPI initialization calls at the beginning to
identify the total number of processors, each processor's MPI rank, etc.

All the processors execute the initial part of the code where they read input parameters, assign
material properties to zones, etc. As noted previously, one requirement for this parallelization
strategy is that the storage for all the zones must fit in the local memory of each processor.

Results

The physical problem simulated is transport through an inertial confinement fusion plasma con-
sisting of a 50%-50% mixture of deuterium and tritium surrounded by SiO,, all at elevated tem-
perature and density. A single time step is modeled, during which approximately 24,000,000 pho-
tons are emitted. The material is divided up into 1,960 zones, arising from 49 axial mesh intervals
and 40 radial mesh intervals. Twelve energy groups are used. For output the code keeps track of
the number of photons absorbed and the number of photons escaping the plasma, as well as the
number of photons escaping in each energy group.

Table C-1 gives performance results for solving the test problem with TPHOT on the MTA and
T3E. The listed times do not include input and output. On a single-processor, the MTA is about
four times faster than the T3E. Scalability on the T3E is nearly linear to 64 processors. Scalability
on the MTA is poor when parallelization is only by zones, but nearly linear to 8 processors when
parallelization is by both zones and energies.

Parallelization on the T3E is done across the 24,000,000 photons. Even on 64 processors, the work
per processor is substantial. Since the computation is embarrassingly parallel and there is little
communication between processors, scalability is linear. The poor scalability on the MTA when
parallelized across just the 1,960 zones is due to insufficient parallelism. Parallelizing over both
zones and energy groups provides sufficient parallelism to cover latencies, amortize overheads,
and load balance the work on each stream.




For this embarrassingly parallel problem, the distributed memory of the T3E is actually an advan-
tage. Information for each particle is naturally kept separate on different processors. The only
need for communication is for tallying system values (MPI_REDUCE) at the end of the time step.
By contrast, on the MTA with its shared memory, it is necessary to avoid having different threads
update shared variables in an irreproducible manner. Thus, all common variables, such as the po-
sitions and angles, need to be identified and declared as local. In addition, the atomicity of tally
operations needs to be insured by inserting pragmas before each operation.

The good scalability on the T3E is made possible because the data for all the zones fit in the mem-
ory of each local processor. For much larger problems this would not be possible. A different par-
allel implementation would then be needed and would likely not scale as well. On the MTA, on
the other hand, the only issue is parallelism. As long as, the number of zones times the number of
energy groups is much larger than the number streams, performance will scale linearly.

If more parallelism were needed on the MTA, the parallelization could, in fact, be done across
photons. One way would be to add a loop over threads outside the loop over zones. If the total
number of threads to be used is NT, then edep would be divided by NT (instead of by NP, as in
the MPI code), and each thread would simulate 1/NT of the total photons. Some existing declara-
tions would have to be moved, and a few new ones would need to be added.

Table C-1. Performance results for TPHOT on the MTA and T3E

Computer & strategy Processors Time(s)  Speedup  Efficiency
MTA by zones 1 737 1.00 1.00
2 386 191 0.95

4 219 337 0.84

8 161 458 0.57

MTA by zones & energies 1 718 1.00 1.00
2 356 2.02 1.01

4 178 4.03 1.01

8 91 7.88 0.99

T3E by photons 1 3,008 1.00 1.00
2 1,506 2.00 1.00

4 757 3.97 0.99

8 378 7.96 0.99

16 190 15.8 0.99

32 95 31.7 0.99

64 48 62.7 0.98
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C3I Parallel Benchmark Suite

Sharon Brunett, John Thornley, and Marrq Ellenbecker
California Institute of Technology

John Feo
Tera Computer

Performance for two C3I benchmarks has been investigated on the MTA and compared to that on
conventional uniprocessor and multiprocessor architectures. This case study summarizes the per-
formance obtained and the associated programming effort. Preliminary results were reported in
Ref. [D-1]. :

Benchmark Problems

The U.S. Air Force Rome Laboratory C3I Parallel Benchmark Suite [D-2] consists of eight problems
that compactly represent the essential elements of real C3I applications. Each problem consists of
the following: 1) a problem description giving the inputs and required outputs; 2) an efficient se-
quential program written in C to solve the problem; 3) the benchmark input data; and 4) a correct-
ness test for the benchmark output data. The chosen C3IPBS problems — Threat Analysis and Ter-
rain Masking — are computationally intensive, memory intensive, and compact; they involve non-
trivial data and control structures; and they have the potential for large-scale parallelization.

Experimental Goals

Using the Threat Analysis and Terrain Masking benchmarks, initial answers to the following ques-
tions were explored:

1. What is the performance of a multithreaded architecture, such as the Tera MTA, compared
to conventional uniprocessor and multiprocessor architectures?

2. What are appropriate methods for developing efficient, general-purpose programs on a
multithreaded architecture, and how much programmer effort is required?

3. What are the difficulties in ensuring sufficiently large numbers of threads are available to
saturate processors?

Experiments were performed on conventional uniprocessor and multiprocessor architectures, as
well as on the Tera MTA. Table D-1 gives the computers used in the performance comparisons.
Also listed is the HP V2250, which was used in the thermal explosion case study described in a
subsequent section. For the X2000 the number of processors listed is the maximum actually used
(64), which is smaller than the total number available (256).
Table D-1. Computers used in performance comparisons
Computer Processors Operating system

Digital AlphaStation 1 x 500-MHz Digital Alpha 21164A Digital Unix 4.0C

NeTpower Sparta 4 x 200-MHz Intel Pentium Pro Windows NT 4.0
HP Exemplar X2000 64 x 180-MHz HP PA-8000 SPP-UX 5.3

HP V2250 32 x 240-MHz HP PA-8200 HP-UX 11.01
Tera MTA 8x 260—MHz custom GaAs MT Unix
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Threat Analysis

The Threat Analysis problem is a time-stepped simulation of the trajectories of incoming ballistic
threats with computation of options for intercepting the threats. The input to the problem consists
of (i) the trajectories of a set of incoming threats, and (ii) the locations and capabilities of a set of
weapons that can be used to intercept the incoming threats. For each threat and weapon pair, the
program must compute the time intervals over which the threat can be intercepted by the weapon.
The program computes a set of tuples of the form (threat, weapon, interval) indicating that the
weapon can intercept the threat over a particular time interval. Because of the constraints on threat
interception, there can be zero, one, or more intervals associated with each (threat, weapon) pair.

Automatic Parallelization. On both the HP Exemplar and Tera MTA, the manufacturer-supplied
automatic parallelizing compilers were unable to identify any practical opportunities for parallel-
izing the sequential Threat Analysis program. The compilers and analysis tools were unable to
suggest changes to the program (e.g., algorithmic modifications or the addition of pragmas) that
might expose parallelism. The reason is that the algorithm is inherently sequential. The outer-loop
iterations assign to shared variables, and the inner loops are sequential time-stepped simulations.
In addition, the program (like most general-purpose programs) contains chains of function calls,
pointer operations, and non-trivial index expressions, which thwart compiler analysis and make
automatic parallelization extremely difficult.

Multithreaded Solution. The program, however, can be manually parallelized through relatively
straightforward algorithmic modifications as follows. The outer loop over all threats is replaced by
a multithreaded loop in which each iteration is responsible for a different chunk (i.e., subrange) of
the threats. The problem of the shared variables is solved by modifying the algorithm so that each
iteration increments a private counter and assigns its own contribution to the solution, interval ar-
ray. Moving those variables to the inner blocks localizes declarations of other variables. The re-
worked code has outer-loop iterations that are completely independent of each other and able to be
executed by separate threads. Lastly, a compiler pragma above the revised outer loop is necessary
to instruct the compiler to run the loop in parallel.

A drawback of this multithreaded solution is the necessity for a larger interval array than was
needed in the sequential program. Since there is no way to determine in advance the number of
intervals that each iteration will compute, each iteration's section of the interval array must be gen-
erously oversized. Therefore, the larger the number of chunks, the larger the interval array. Par-
allelism is achieved at the expense of extra memory requirements.

Performance Comparison of Sequential and Multithreaded Threat Analysis. Table D-2 gives the
sequential and multithreaded total execution times for five input scenarios of the Threat Analysis
benchmark on the computers used in this evaluation. The untuned MTA time is sequential, while
the other MTA times are multithreaded.

The single-processor performance on the three conventional computers varies roughly in propor-
tion to the respective processor speeds. The benchmark program is compute-bound, rather than
memory-bound, so the faster processors perform better. By contrast, the single-processor sequen- -
tial speed of the MTA is extremely slow — roughly 13 times slower than the Alpha and nine times
slower than a single X2000 processor. The MTA is not efficient for execution of single-threaded
(sequential) programs. The principal reason is that a single thread on the Tera MTA can issue only
one instruction every 21 cycles, giving at most 5% processor utilization.

Multithreaded speedups on the Pentium Pro computer are excellent up to the four processors
available. Threads are completely independent and execute mostly within cache. The program was
manually parallelized using the Caltech Sthreads library [D-3] implemented on top of the Win32
thread API [D-4] supported by Windows NT and was executed using one chunk/thread per
Pentium Pro processor. Similarly, good speedups are achieved on the X2000 up to more than 32
processors, again because threads are completely independent and execute mostly within cache.

Multithreaded performance on a single MTA processor is dramatically faster, by a factor of 30,

compared to sequential performance and a factor of two or more faster than on any of the other
single processors. However, speedup on multiple MTA processors is poor and peaks at only seven
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Table D-2. Performance results for Threat Analysis

Computer Processors Time (s) Speedup  Efficiency
Digital Alpha 1 187
Pentium Pro 1 458 1.00 1.00
4 117 391 0.98
HP Exemplar X2000 1 280.1 1.00 1.00
2 140.5 1.99 1.00
4 70.54 3.98 0.99
8 35.40 791 0.99
16 18.18 154 0.96
32 9.39 29.8 0.93
64 5.64 49.7 0.78
Tera MTA untuned 1 2485
Tera MTA 1 83.4 1.00 1.00
2 482 173 0.87
3 326 2.56 0.85
4 264 3.16 0.79
5 234 3.56 071
6 213 3.92 0.65
7 20.8 401 0.57
8 20.9 3.99 0.50

processors, resulting in a speed there that is slightly slower than for 16 X2000 processors. Pre-
sumably the 1,000 threats in each benchmark scenario are insufficient to achieve good processor
utilization for more than a few MTA processors. This demonstrates that more parallelism is
needed to achieve good speedup on the MTA than on conventional multiprocessors.

Terrain Masking

The Terrain Masking problem is a computation of the maximum safe flight altitude over all points
in an uneven terrain containing ground-based threats. The input to the problem consists of (i) the
ground elevation for all points in the terrain, and (ii) the position and range of the threats. The
output of the problem consists of the maximum altitude at which an aircraft is invisible to all
threats for all points in the terrain.

For each threat in turn, the benchmark program computes the maximum safe flight altitudes due to
the threat over its region of influence, then minimizes these altitudes into the overall result. The
maximum safe flight altitudes due to a threat cannot be computed directly into the overall result
because the value at one point is computed from the values at neighboring points.

Automatic Parallelization. As was the case for the previous program, the HP and Tera compilers
were not able to identify any meaningful opportunities for automatic parallelization of the sequen-
tial Terrain Masking program. Moreover, the compilers and analysis tools were unable to suggest
changes to the program that might expose parallelism. The outer loop of the program cannot be
parallelized without algorithmic modifications, since its iterations over all threats assign to over-
lapping regions of the solution, masking array. The inner loops contain opportunities for paralleli-
zation. Similar to the previous program, the Terrain Masking program contains chains of function
calls, pointer operations, and non-trivial index expressions that thwart compiler analysis and make
automatic parallelization extremely difficult.

Multithreaded Solutions. The outer loop over all threats is not immediately parallelizable, be-
cause the regions of influence of different threats can overlap. A straightforward parallelization
solution requires that a locking scheme be used for access to the masking array, to ensure that mul-
tiple threads do not assign to overlapping regions of masking.
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The outer loop over all threats is replaced by a multithreaded loop inside which each iteration dy-
namically processes individual threats until all threats have been processed. The problem of
shared access to the masking array is solved by blocking the terrain into equal-sized blocks, with a
separate lock associated with each block. The role of the temp and masking arrays is swapped in
the computation of the maximum safe flight altitudes in the region of influence of a threat. The
temp array is minimized back into the masking array block by block. To avoid interference be-
tween threads, blocks are locked before writing and unlocked after writing.

The principal drawback of the preceding coarse-grained implementation is that each thread re-
quires its own temp array. For the benchmark problem the region of influence of each threat is up
to 5% of the total terrain. Therefore, this approach does not require excessive extra storage for
small numbers of threads (e.g., 16), but is impractical for the large numbers of threads (e.g., hun-
dreds) needed on multiple processors of the MTA.

Indeed, a finer grained implementation is necessary on the MTA. Such an approach parallelizes
the inner loops that compute the maximum safe flight altitude for an individual threat. This is
done using Tera parallelization pragmas and futures constructs. The fine-grained parallelization is
neither easier nor more difficult than the coarse-grained parallelization, but is viable only for the
MTA, not the conventional multiprocessors.

Performance of Sequential and Multithreaded Terrain Masking. Table D-3 gives the sequential
and multithreaded total execution times for five input scenarios of the Terrain Masking benchmark
on the computers used in this evaluation. The untuned MTA time is sequential, while the other
MTA times are multithreaded.

Table D-3. Performance results for Terrain Masking

Computer Processors Time (s) Speedup  Efficiency
Digital Alpha 1 158
Pentium Pro 1 197 1.00 1.00
4 65 3.03 0.76
HP Exemplar X2000 1 201.6 1.00 1.00
2 112.8 1.79 0.89
4 59.5 3.39 0.85
8 373 540 0.68
12 33.5 6.02 0.50
16 37.1 543 0.34
Tera MTA untuned 1 978
Tera MTA 1 37.1 1.00 1.00
2 19.8 1.87 0.94
3 12.7 292 0.97
4 9.6 3.86 0.97
5 79 4.70 0.94
6 6.8 5.46 091
7 6.2 5.98 0.85
8 6.5 5.71 071

The single-processor performance on the three conventional computers varies relatively little be-
tween each other. This is because the program is memory-bound, rather than compute-bound, so
processor speed is not the major determinant of execution time. As for the previous benchmark,
the sequential speed on the MTA is much slower than on the other computers, by roughly a factor
of six compared to the Alpha and a factor of five compared to the X2000. The speed difference is
less than with Threat Analysis, because the conventional processors are not fully utilized in this
memory-bound program.
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Multithreaded speedups on the Pentium Pro and X2000 computers are poorer than for the previous
benchmark. Indeed, the speedup on the X2000 peaks at 12 processors.

Multithreaded performance on a single MTA processor is again dramatically faster, by a factor of
26, compared to sequential performance and a factor of four or more faster than on any of the other
single processors. Speedup is good up to five processors, but tapers off sharply thereafter and
peaks at seven processors, where the speed is 5.4 times faster than on 12 X2000 processors. Again,
insufficient parallelism is available to achieve good processor utilization on more than a few MTA
processors.

Summary

Automatic Parallelization. On both the MTA and Exemplar, the manufacturer-supplied automatic
parallelizing compilers were unable to identify any practical opportunities for parallelization in
either of the two sequential benchmark programs. Nor were the compilers able to make any sug-
gestions regarding changes to the program (e.g., algorithmic modifications, assertions, or pragmas)
that might allow the program to parallelize. .

Automatic parallelization of general-purpose programs is extremely difficult. There are two fun-
damental obstacles:

1. Efficient parallelization usually requires more than parallelization of loops in the sequen-
tial program. It involves significant modification of the underlying algorithm. This is the
case with both benchmark programs. It is unreasonable to expect a compiler to deduce the
high-level purpose of a program and then automatically develop an alternate algorithm to
solve the same problem. :

2. General-purpose programs typically involve hundreds of separately compiled modules,
chains of function calls, non-trivial index expressions, and operations on pointers that
thwart compiler analysis of data dependencies and program flow. With both benchmark
problems, the compilers were not even able to parallelize the manually transformed pro-
grams without explicit parallel loop pragmas.

Manual Parallelization. The MTA and conventional coarse-grained multiprocessors have different
strengths and weaknesses with regard to the ease of manual parallelization. These differences can
be summarized as follows:

1. . A weakness of the MTA is that it requires large numbers of threads for efficient execution.
With the Threat Analysis program, splitting the outer loop into 16 threads yields over 15-
fold speedup on a 16-processor Exemplar, whereas thousands of threads are evidently re-
quired for efficient execution on an 8-processor MTA.

Splitting a program into many threads can be more difficult than splitting it into a few
threads. The number of threads that can be obtained from the outer loop of the Terrain
Masking problem is limited by the 60 threats per input scenario in the benchmark data sets.
This provides plenty of threads for the Exemplar, but not enough for the MTA.

Splitting a program into many threads can require more memory than splitting it into a few
threads, because data replication is often proportional to the number of threads. For both
benchmark problems, outer-loop parallelization requires extra array storage for each
thread.

2. A strength of the MTA is that it provides hardware support for truly fine-grained multi-
threading. For both benchmark problems, algorithms based on fine-grained multithread-
ing of inner loops are practical ori the Tera MTA that are not practical on the conventional
multiprocessors. This suggests that the MTA offers more options for parallelization.

On conventional multiprocessors with operating system support for threads, thread crea-
tion costs tens of thousands to hundreds of thousands of cycles and thread synchronization
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costs hundreds to thousands of cycles. On the MTA, thread creation and synchronization
costs are lower.

Sequential Execution. The most serious performance weakness of the MTA is its extremely slow
execution of sequential (single-threaded) programs. Sequential execution on the 260-MHz MTA is
much slower than on any of the three conventional computers considered. For both C3I bench-
mark programs, sequential execution on the MTA is about five times slower than sequential execu-
tion on a 200-MHz Pentium Pro. The MTA is 13 times slower than a 500-MHz Alpha for the com-
pute-bound Threat Analysis benchmark and six times slower for the memory-bound Terrain
Masking benchmark. The principal reason for the MTA's poor performance with single-threaded
programs is that a single thread can issue only one instruction every 21 cycles.

Poor single-threaded performance is clearly a practical problem for users porting sequential pro-
grams from other computers. It often takes a considerable amount of time to parallelize a sequen-
tial program, and the user may want some kind of acceptable performance while parallelization is
in progress. In addition, some programs or parts of programs are inherently sequential.

Multithreaded Execution. Multithreaded programs with enough threads run dramatically faster
than single-threaded programs on the MTA. For the two benchmark programs the single-processor
MTA speeds improve by factors of 30 and 26 when multithreaded. As a result a single MTA proc-
essor is 3.4 times faster than a 180-MHz PA-8000 processor in the X2000 for the Threat Analysis
benchmark and 5.4 times faster for the Terrain Masking benchmark.

However, speedup on the MTA is poor for both benchmarks and, in fact, peaks at seven processors.
Evidently not enough parallelism is available for the MTA in either of the relatively small bench-
marks. This is also a problem on the X2000 for the second benchmark, but not for the first. Ac-
cordingly, seven MTA processors are slightly slower than 16 X2000 processors for the Threat
Analysis benchmark, but 5.4 times faster than 12 X2000 processors for the Terrain Masking bench-
mark. The results for the Threat Analysis benchmark demonstrate that more parallelism is needed
to achieve good speedup on the MTA than on conventional multiprocessors. ,
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Explode — Thermal Explosion Benchmark

Sharon Brunett and Roy Williams
California Institute of Technology

Model Description

Explode — a thermal explosion benchmark — simulates an explosive wave that initiates chemical
reactions in a reactive material. The code employs a fixed 2-D square mesh, but has a time-varying
computational workload at each mesh point. In particular, the code solves differential equations
describing thermal diffusion as well as temperature-sensitive reactions [E-1]. When the tempera-
ture rises, the time step for solving the reaction equations must become smaller. Thus an explosive
wave moving through the mesh carries not only a high temperature, but also a high computational
workload.

Parallelization and Tuning

Dynamic load balancing is required to achieve good performance in Explode and has proven diffi-
cult to implement effectively on conventional high-end computers, such as the HP X2000 and
V2250. The possibility that the Tera MTA might be better suited for this code motivated the inves-
tigation described here. :

Parallelization on all three computers used a shared-memory programming model. As with the
C3I benchmarks, automatic parallelization by the Tera and HP compilers was thwarted by global
variables within loops and function calls. Modifications to help the compilers parallelize safe code
segments were mostly straightforward, but required understanding the code and its data depend-
encies. Tera and HP compiler directives, along with code reorganization, were necessary for initial
parallel implementations. Since Explode was written from scratch, there was no sequential code to
rework, as was the case with the C3I benchmarks.

Tuning on the MTA paid special attention to moving parallelism to the outer loopa. Also, the
number of streams and dynamic scheduling were specified for certain loops. Such tuning was fa-
cilitated by use of the Traceview tool.

Tuning on the HP systems involved the use of process-monitoring tools to identify the performance
inhibitors. As expected, memory contention and data cache misses from particular sections of the
code were to blame. Straightforward fixes resolved some of these problems and resulted in signifi-
cant performance improvements.

Although not attempted, a distributed-memory implementation of Explode on the HP systems
would have required periodic data redistribution to keep all of the processors busy. This would
have entailed communication and bookkeeping overhead whenever the load-balancing step was
done, which was not necessary in the shared-memory implementation.

Test Problem and Performance

The test problem uses a square mesh with 301x301 mesh points. The diffusion time step is con-
stant, while the reaction time step varies with the reaction rate. In general, the reaction time step is
smaller than the diffusion time step, thus causing a workload imbalance. The calculation continues
until the time rate of change of the burning reactants is less than a specified constant.

Table E-1 gives performance results for the test problem run on the MTA, V2250, and X2000. The
single-processor speed on the MTA is 2.5 times faster than on the V2250 and 3.7 times faster than
on the X2000.

Moreover, MTA scalability is much better, indicating very effective load balancing. At 8 processors
the parallel efficiency is 92% on the MTA as compared to 43% and 47% on the V2250 and X2000,
respectively. Load imbalance and system overhead for thread management account for much of
the poorer scalability on the HP systems. Speedup peaks at 16 processors on the V2250 and at 12
processors on the X2000.
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Table E-1. Performance results for Explode with 301x301 mesh points

Computer Measured Fit
&, Processors Time (s) Speedup efficiency efficiency
MTA 1 31.23 1.00 1.000 1.000
f,=0.013 2 15.95 1.96 0.979 0.987
3 10.67 2.93 0.976 0.975
4 8.07 3.87 0.968 0.963
5 6.55 4.77 0.954 0.951
6 557 5.61 0.935 0.939
7 4.82 6.48 0.926 0.928
8 424 7.36 0.921 0.917
V2250 1 78.0 1.00 1.000 1.000
£,=0.20 2 47.8 1.63 0.816 0.833
4 31.8 245 0.613 0.625
8 2238 3.42 0.428 0.417

12 18.2 4.29 0.357

16 12.7 6.14 0.384

20 17.5 4.46 0.223

32 20.7 3.77 0.118
X2000 1 116.3 1.00 1.000 1.000
f,=0.15 2 65.8 1.77 0.884 0.870
4 422 2.76 0.689 0.690
8 30.7 3.79 0474 0.488
12 249 4.67 0.389 0.377

16 30.8 3.78 0.236

" Performance on the HP systems would likely improve if the algorithm were written in a more
coarse-grained manner, while paying close attention to data distribution in memory and between
threads. However, the associated programming effort would be non-trivial and substantially
greater than on the MTA, which achieves efficient multithreading without regard to data distribu-
tion.

An interesting finding is that scalability on the MTA is fit very well by Amdahl's law:

efficiency =1 / (1 + £(p-1)),
with a serial fraction f; of 0.013, where p is the number of processors. The efficiency measured and
that fit by Amdahl's law are listed to three figures in the table. For all numbers of processors the
agreement is good to less than 1%. This also demonstrates no significant load imbalance.
Amdahl's law also fits to within 2% the V2250 and X2000 efficiencies up to 8 and 12 processors, re-
spectively, but for much larger values of f,, as noted in the table. These larger effective serial frac-
tions include the effects of poor load balancing and system overhead.

Conclusion

The thermal explosion benchmark representing highly dynamic workloads performed very well on
the MTA. No special attention was given to data locality when implementing the multithreaded
version, which made coding straightforward. Excellent scaling was obtained, which bodes well for
other codes that require good load balancing to manage variable workloads.
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Synthetic Aperture Radar

Timothy P. Boggess and Stephen R. Blatt
Sanders/Lockheed Martin

Summary

Sanders, a Lockheed Martin Company, has ported the RASSP SAR benchmark [1] to the Tera MTA
computer. This report documents the result of that effort and explores the viability of the MTA for
real-time embedded applications such as signal processing.

Sanders is building some of the most powerful embedded multiprocessor systems in the world,
interconnecting hundreds of processors. Multithreaded architectures provide an innovative way to
get more performance out of a individual processor by ensuring that it is never idle, whether due to
a cache miss, the inherent speed of the memory, or data synchronization. In addition, multi-
threading promises much easier code parallelization.

Sanders' goal in this program was to evaluate a particular multithreaded architecture, the Tera
MTA, for real-time, embedded applications to determine

¢ what performance increases might be expected over conventional processing,
¢ how the hardware and software scale as the number of processors increases, and
¢ how the latency might be controlled so that task deadlines are not missed.

The investigation was broken into two tasks: 1) evaluation of current MTA systems for real-time
embedded applications, and 2) a study to identify what architectural changes would be appropriate
for a variant MTA specifically designed for real-time embedded applications.

The evaluation included performance metrics, such as processor utilization, scalability, and real-
time capabilities. Also considered were usability metrics, such as ease of programming, tools for
tuning, and software portability.

The principal findings are that:

e The MTA is relatively easy to program.

e Tera provides good tools for isolating and tuning unoptimized code. _

e Real-time performance is achievable on the chosen benchmark with only 3 MTA processors,
while 8 processors beat the requirements for real-time operation by more than a factor of
two.

e The MTA is a good soft real-time computer.

e Improvements in communications, task scheduling, form factor, and fault tolerance would
be needed for the MTA to become a hard real-time computer.

Objective

The objective of this study was to determine the suitability of multithreading as implemented by
Tera Computer in its MTA computer for use in high-performance, real-time applications developed
by Sanders. The particular application investigated was Synthetic Aperture Radar (SAR) signal
processing. Specific elements evaluated included:

1. System performance (speed and scalability) with a known benchmark,
2. Ease of porting existing code to a new computer environment,
3. Identification of issues impeding real-time usage of the MTA.




Description of Application

The SAR application investigated was the RASSP Benchmark-1. This code was developed by the
MIT Lincoln Laboratory for its Advanced Detection Technology Sensor (ADTS), which is a po-
larimetric air-to-ground SAR operating in strip-map mode. :

Synthetic Aperture Radar is a technique to combine multiple radar returns coherently to achieve an
effective increase in the aperture size. An example flight path for an air-based system is shown in
Figure F-1. By combining returns along the flight path, the cross-range (or azimuthal) resolution is
increased.

Cross-Range

Figure F-1. Example SAR geometry

The stages for processing the SAR data are shown in Figure F-2. The data are initially read in a
format specific to the Lincoln Laboratory ADTS system. Each data frame consists of 512 pulses that
are acquired in 0.92 s. Each pulse provides a packet of data, preceded by a Barker code header.
The algorithm identifies the start of data by finding the Barker code. Then range processing is
done, which consists of applying Taylor. weighting, performing a 2,048-point FFT, and applying
radar cross-section weighting. This is followed by azimuth (or cross-range) processing, in which
the data from all 512 pulses are combined and convolved with a range-based kernel. This involves
performing a 1,024-point FFT, multiplying by the kernel, and performing the inverse 1,024-point
FFT to provide the output. For validation purposes, checksums are calculated across one row and
one column and compared to the pre-calculated checksums for the specific data sets.

The benchmark code is written in C. It consists of a main routine and supporting routines to read
in data and perform FFTs. The software package also includes weights and coefficients required by
the algorithm and software to generate test data sets.

Porting and Tuning

The porting and tuning of the SAR benchmark for the MTA consisted of identifying and changing
variable declarations to accommodate bit-level manipulations in the original code, restructuring the
way data were introduced into the processing, and adding compiler directives to help paralleliza-
tion. The tuning tools Canal and Traceview were quite useful in determining what needed to be
done. However, running Traceview over the Internet was extremely slow.

Much of the time and many of the problems encountered in porting and tuning were associated
with compiler changes, operating system changes, and communications issues arising from the
immature software environment of the MTA. The effort was helped considerably by assistance
from Tera staff.
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Figure F-2. SAR algorithm process flow
Porting and tuning involved several steps:

— Port original software to MTA.

— Add explicit parallelization directives.
— Revise data reading strategy.

— Revise algorithms.

— Remove tracing to obtain faster timing.

Further discussion of each of these follows.

Initial Port. The original software compiled, linked, and ran in serial mode on MTA, but gave in-
correct results (as indicated by the checksum). This was traced to the way that data were read in
and manipulated at the bit level. Since the MTA has a 64-bit processor, its default word size for
integers is 8 bytes. This is twice as long as the 4-byte default on the 32-bit machines originally used
to develop the benchmark. Once key variables were declared as integer*4, the benchmark executed
correctly in serial mode on the MTA and processed one frame of data in 78 gigaticks (or 300 s for a
260-MHz cdlock). (Run times during for the porting and tuning are presented in gigaticks to elimi-
nate variations associated with changes in the clock speed. One tick = one clock period = 3.85 ns
for a 260-MHz clock.) For reference, the original benchmark took 32 s to process a single frame on a
200-MHz Sun UltraSPARC I workstation.

Parallelization. Compiler directives regarding parallelization were inserted in the main routine

ahead of each major for loop to parallelize the azimuth processing. These directives and their pur-
pose are as follows:
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#pragma tera assert parallel: to assert that the separate iterations of a loop are independent and
may execute concurrently.

#pragma tera dynamic schedule: to assign iterations to threads at run-time rather than assign-
ing them by blocks at compile time. Dynamic assignment provides more flexibility if some it-
erations take longer than others. ‘
#pragma tera use n streams: to request at least n threads are used per processor for a loop. At
this stage the compiler default of 40 streams was used.

Implementing these directives and increasing the number of processors from one to two reduced
the run time from the serial time of 78 gigaticks to 38 gigaticks.

Revised Data Input. The original code read in data from a file. However, in a real-time imple-
mentation, the actual data would be written to memory through Direct Memory Access, and the
overhead of accessing disk would not be present. Furthermore, the original code read in each pulse
(out of 512 within a frame), range-processed it, and went back to read the next one.

Two significant changes associated with data input were made. First the code was modified to
read in the entire data file at the beginning of execution. This reduced the run time to 6.5 gigaticks.
Then the time to read in the file was eliminated from the measured time, since data input would be
handled by a separate processor in a real-time setting. This further reduced the run time to 1.3 gi-
gaticks on two processors, showing that all of the preceding run times were dominated by data in-
put.

Utilizing a Special Operation. The FFT algorithm was modified to replace a small routine that
implemented a bit-reversal of indices by a special operation on the MTA: TERA_BIT_MAT OR.
This reduced the run time to 1.0 gigaticks.

Timing without Traceview. Execution with Traceview was useful in identifying implementation
inefficiencies, but added overhead to the run times. Removing Traceview from the executable re-
duced the run time to 0.50 gigaticks.

Further Tuning. Increasing the number of streams per processor to 100 or more and the number of
processors from two to four reduced the run time to 0.19 gigaticks. When the system size increased
to eight processors at the end of the project, the run time further decreased to 0.11 gigaticks (or
0.43 5). For reference, the same code ran on the 200-MHz Sun workstation in 26 s.

Scaling Results

Timing results for one through eight processors, broken down by various components, are listed in
Table F-1 and plotted in Figure F-3. The time to process one frame with eight processors is 18% of
the time with one processor. Compared to the ideal of 12.5% of the single-processor time, this cor-
responds to 69% parallel efficiency. The time for azimuthal processing, the dominant component,
decreases the most on eight processors to 16% of the single-processor time, while the times for
range and header processing decreas to 22% of the single-processor times.

Table F-1. Times for single frame of SAR benchmark on MTA

Component 1proces-| 2proces-{ 3proces-| 4proces-| 6proces] 8 proces-

sor| sors sors sors sors SOrs|
Header time (s) 0.09 0.05 0.04 0.03 0.03 0.02
Range time (s) : 0.72 0.38 0.28 0.26 0.16 0.16
Azimuth time (s) 1.58 0.79 0.55 0.44 0.32 0.25
Total time (s) 2.38 1.22 0.86 0.73 0.51 0.43
Parallel efficiency 100% 98% 92% 82% 78% 69%
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Figure F-3. Timing results for one frame of SAR data versus number of processors. (Note that
shadowed points for 5 and 7 processors are interpolated.)

Even though the azimuthal component is dominant, scalability is primarily limited by the range
component, the time for which does not improve at all going from 6 to 8 processors. Examination
of the range processing code reveals only one significant loop, which has too few iterations to use
more than a few processors effectively.

Table F-2 shows that the times for processing different data frames are constant as the number of
frames increases.

Table F-2. Times for muitiple frames of SAR benchmark on MTA

Component 1 Processor| 2 Processors| 3 Processors| 4 Processors
Frame 1 time (s) 2.35 1.23 0.84 0.73
Frame 2 time (s) 2.35 1.24 0.84 0.73
Frame 3 time (s) 2.37 1.24 0.85 0.74
Frame 4 time (s) 2.41 1.27 0.87 0.74
Total time (s) 9.48 4.98 3.40 2.94
Parallel efficiency 100% 95% 93% 81%

Figures F-4 and F-5 give Traceview plots showing processor utilization for two different cases. The
first plot corresponds to processing a single frame on four processors at an intermediate stage of
tuning. The x-axis represents time, with the units being gigaticks. Three lines are plotted:

— The uppermost, medium-shaded line shows the number of instructions available each tick.
Since there are four processors on a dedicated machine, the line approaches 4 instruc-
tions/tick for the entire run. A small fraction of the instructions is consumed by the oper-
ating system.

~ The bright line shows the number of instructions per tick executed by the program. When
compared to the preceding line, this gives the processor utilization. At the left of the plot,
during initialization, the number is very small. By contrast, during the subsequent process-
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Figure F-5. Traceview output for four consecutive frames with eight processors, showing header,
range, and azimuthal processing structure for each frame.

ing components, all four processors are fully utilized except at the beginning and end of
each component. Note that header processing is relatively time-consuming, more than
range processing in fact, at this stage of tuning.

— The dark line shows the number of floating-point operations per tick. Essentially all of the
flops occur during the range and azimuthal processing components.

The second plot corresponds to processing four successive frames on eight processors at the end of
tuning. This time the units for the x-axis are seconds, and the flop rate is not shown. The vertical
scale is doubled, since there are twice as many processors, and the horizontal scale is compressed to
accommodate four frames. Otherwise the structure is similar to that in the previous plot, except
that the header processing time is relatively short now.

Real-Time Considerations

Real-time processing requires a run time less than the data acquisition time, which is 0.92 s per
frame. Examination of the scaling data in the preceding tables shows that 3 MTA processors are
sufficient to process the data in real-time, whereas 8 processors run more than twice as fast as nec-

essary.

Systems developed for real-time applications are generally classified as soft real-time or hard real-
time systems. A soft real-time system is designed so that timing deadlines are rarely missed, but
without deadline assurances being built in. A soft system is suitable for applications where late
execution is unfortunate, but not critical. Hard real-time systems, on the other hand, are built to
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ensure timing performance and predictability. Tasks must have known durations (e.g., FOR loops
rather than WHILE loops), and error handling must be built in to handle missed deadlines. Mis-
sion-critical applications are hard real-time. As examples, RealPlayer audio/video is soft real-time,
whereas a missile defense system is hard real-time.

As a soft real-time computer, the MTA performs well. Its multithreaded architecture and near-
linear scalability provide the capability for enough processing power to keep problems with soft
time requirements (such as the SAR benchmark) running in real-time.

* Key attributes of hard real-time systems are the following:

e A global dlock is present to maintain timing across the system.

e Interrupts are time triggered rather than event triggered. When an exception occurs in an
event-triggered system, a cascade of triggers often results, which overwhelms the operating
system.

e Language support is available to identify and discourage hard-to-time constructs, such as
WHILE, and to specify what to do when a deadline is missed (e.g., stop processing the
frame that is now late and start on the next one, so that the system does not fall behind).

e Tasks are real-time scheduled and executed according to priority. In general, data rates are
constant, and input signals are known, so tasks can be prioritized to assure completion of
every task prior to its deadline.

e Communications use protocols that are time predictable, such as TTP (Time Triggered Pro-
tocol), rather than protocols with unbounded latency, such as Ethernet.

e Fault tolerance is generally required so that the system as a whole continues to function
even if one of its components goes down.

Of these requirements, the only one currently available in the MTA is a global clock. Real-time
scheduling, time triggers, and language support are not presently included, but could be added
relatively easily. The major areas in which improvements would be needed are predictable real-
time communications and fault tolerance.

The real-time communications issue arises because of the MTA's network design, which employs
non-deterministic packet routing and makes no real-time guarantees. Network nodes use a form of
deflection routing, so packets are not buffered. At each clock tick a network node reads the in-
coming packets from each port, chooses a destination port for each packet, and routes the outgoing
packets. Since only one packet may be routed to a given port each tick, collisions are resolved by
randomly assigning an unused port to all but one of the packets competing for a given port. There-
fore, the route a packet travels through the network is non-deterministic, and no guarantee can be
made about travel time. To ensure message delivery within a fixed time, the network would need
to be redesigned.

Ironically the MTA is designed to tolerate large memory latencies. For a hard real-time system,
however, an upper bound on the allowable memory latency is evidently needed.

One final consideration is that real-time systems are often embedded, so size, weight, and power
(SWaP) are important. Although these factors do not affect real-time correctness, customers who
need real-time predictability generally need to minimize SWaP as well. Since the MTA was de-
signed to be a supercomputer, it is large, heavy, and very power-hungry. As a result, few real-time
applications could use an MTA as is, even if it were hard real-time compliant.

Changes to the MTA design underway or under consideration could make the MTA more suitable
for real-time applications. The processor and memory boards are being redone in CMOS parts
rather than GaAs ones; the chip count is being reduced considerably; the form factor is being re-
duced to about the size of a VME chassis; and alternatives to water cooling are being explored.

Conclusions
Performance and Scaling. Real-time performance for the SAR benchmark was achieved on a three-

processor MTA system. The MTA exhibits good scalability from one up to the eight processors
available for evaluation. 'Parallel efficiency varied from 98% with 2 processors to 82% with 4 proc-
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essors to 69% with 8 processors. With some additional effort, even better scaling might be achieved
by overlapping the processing of data frames. In any case, at least a factor of two more work could
be accommodated on 8 processors and still meet the real-time requirement.

Porting and Tuning. The changes made to the benchmark code were relatively minor. Much of
the time and many of the problems in porting and tuning were due to the immature software envi-
ronment on the MTA. The tuning tools were helpful, but assistance from Tera staff was invaluable.

Although the SAR algorithm was not implemented in parallel on a conventional signal processor
for a true comparison, the effort required to do such an implementation is believed to be consid-
erably higher than the port to the MTA. The reduced labor for algorithm porting to the MTA is one
of its most attractive features.

Real-Time Issues. Performance of the MTA is good enough for soft real-time applications, where
occasional instances of late execution are acceptable. For hard real-time applications, changes in
communications and task scheduling are needed. Moreover, for the defense environments in
which real-time processing is needed, improvements in the MTA form factor and fault tolerance
are also needed.
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TRANAIR -~ Computational Fluid Dynamics
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G.1. Introduction

TRANAIR is a large-scale fluid dynamics package developed and used extensively by The Boeing
Company for aircraft design. Developed and optimized over many years for Cray vector
supercomputers, TRANAIR is representative of many defense legacy codes in its complexity and
lack of portability.

The goals of this project were to evaluate the feasibility of porting a production-level defense appli-
cation to the Tera MTA and to investigate how easily multilevel parallelism can be applied to an
industrial problem. This evaluation involved the identification of several time-critical sections
within TRANAIR. To demonstrate how multithreading on the MTA can be used to accelerate and
scale these critical sections, new algorithmic approaches were implemented.

Another important aspect of this work was the feedback provided to MTA system and compiler
software developers. MTA system stability improved steadily and dramatically during the evalua-
tion period, due in part to stress-testing TRANAIR modules.

This report outlines the accomplishments made, the porting effort required, and the algorithmic
modifications implemented to take advantage of the multithreaded architecture. In Section G.2 the
basic structure of the TRANAIR package is outlined. Section G.3 discusses the overall porting ef-
fort and identifies the critical sections of the code and the levels of parallelization available.

Sections G.4 and Section G.5 discuss the motivation and development of an incomplete LU factori-
zation (ILU) algorithm optimized for the MTA. The most computationally intensive part of
TRANALIR lies in solving the nonlinear system of equations that result from the finite element ap-
proximation. Its efficiency relies on the efficiency of the parallel linear preconditioner, in this case
incomplete LU factorization, used in the hierarchical, preconditioned Krylov-Newton iterations.
The preconditioner is a critical component in obtaining TRANAIR performance. :

Performance results for the factorization and triangular solves are presented in Section G.6. Tim-
ings for the ILU factorization applied to matrices generated from a Boeing 747 test case on an eight-
processor MTA show a 4.8x speedup over a single-processor run and a 2.1x speedup over the
original version run on a single T90 processor. Section G.7 summarizes the findings and discusses
future work.

G.2. Structure of TRANAIR

TRANAIR is a package of computer programs for analyzing complex configurations in transonic
flow with subsonic and supersonic freestreams. TRANAIR produces a numerical solution of the
full potential equation subject to a set of general boundary conditions and can handle regions with
different total pressures or temperatures. A locally refined rectangular grid generated automati-
cally within the TRANAIR code is used for the discretization of the boundary value problem. The
method is described in detail in Refs. [G-1] and [G-2].

Structurally, TRANAIR is a collection of Unix scripts and executables that are coordinated via job
control files. The TRANAIR package consists of four main program modules:

Input Processor (fdinp (3D) or tdinp (2D)),

Flow Solver (fdsol or tdsol),

Output Processor (fdout or tdout),

Binary Converter to generate a graphics output file(fdcic).
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The code is written primarily in Fortran 77, but includes a specialized I/O and memory manage-
ment library written in C. Also included are C routines to implement Cray intrinsic functions.

Production runs of TRANAIR at Boeing are still limited to Cray vector supercomputers. The pro-
gram has been historically difficult to port to other architectures. Huge memory requirements
made necessary the use of out-of-core solvers for Cray computers. The embedded nature of such
solvers complicates the direct parallelization of existing algorithms. In addition, the code calls
many specialized Cray library routines.

G.3. Porting Efforts

Several modifications to the Boeing build structure were needed in order to port TRANAIR to the
MTA. The complexity of the TRANAIR build process required the development of a specialized
cross-compilation environment between Sun workstations and the MTA. To facilitate the debug-
ging effort on the MTA, a Sun workstation version of TRANAIR was developed to serve as a reli-
able reference point. A collection of small NASA test cases, which exercise large portions of the 2-D
and 3-D solvers, was provided to by Boeing and were used for testing purposes. Such tests were
prerequisite to running more difficult problems.

The TRANAIR development model, particularly the use of Cray-style update modules, made it
necessary to use standard object format libraries in the development. This made inlining and in-
terprocedural optimization impossible and limited much of the potential performance improve-
ment.

The code is organized into several archives which are linked together to generate the program
modules. The porting effort has focused primarily on the flow solver module fdsol/tdsol, which is
the computational engine of the code. The output processor and binary converter modules have
not been evaluated at this time.

Discussions with Boeing scientists David Young and Craig Hilmes led to the identification of sev-
eral areas in the code that admit parallelization. Throughout TRANAIR, there are abundant op-
portunities for parallelization in memory management. Data are typically accessed indirectly via a
buffering method and are stored in blocks, which may be in- or out-of-core. Variables may also
span several blocks. Since each block access is mdependent the data-access loops could be made
parallel. Work on the parallelization of data access is still in progress.

Within the flow solver there are multiple opportumues for parallelism. The flow solver consists of
the following modules:

¢ Initialization starts the simulation and reads and /or generates initial data; ‘
* OPRDEF defines and computes the finite element operators that make up the system of
equations;

BLCKR reorganizes the equations to bring them into an appropriate form for the solver;
SOLVER solves the system of nonlinear equations by applying a Newton-GMRES method;
PSOLVR is a design version of SOLVER that allows for multiple right-hand sides;

ADGREF carries out adaptive grid refinement based on the convergence of the current so-
lution.

The module OPRDEF defines and computes the finite-element operators and should achieve nearly
perfect scaling on the MTA. Its structure lends itself well to high-level paralielism since the opera-
tors for individual finite elements can be computed independently. Unfortunately the style in
which the code is written does not admit parallelization by the simple addition of compiler direc-
tives. Work continues on rewriting the structure of the operator definitions such that the computa-
tion is represented as a single parallel loop over all elements.

The module BLCKR reorganizes the set of equations and the unknowns so that they appear in a
more convenient form for the solver, i.e., in blocked form. On the higher level this process involves
many inherently serial algorithms. One can expect at most vector-level parallelism in these rou-
tines. It has not been determined whether it is better to parallelize the vector loops involving the
data of a single block, or to parallelize over all of the blocks, or to do some combination of the two.
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The SOLVER module solves the system of non-linear equations using a Newton-GMRES approach.
PSOLVR is the “design” or “optimization” version of the SOLVER module and accommodates
multiple right-hand sides. PSOLVR readily admits coarse-grain parallelization, since each right-
hand side represents an independent linear system to be solved. As the parallelization of a single
right-hand side is the more challenging problem and of more interest to Boeing scientists, efforts
here concentrated on the SOLVER module. The B7471 test contains a single right-hand side.

Most of the code modifications, while tedious and time-consuming, are theoretically not difficult to
implement. The parallel sparse factorization of irregular systems present in the SOLVER module,
however, has always been considered challenging in practice. Although the work on porting and
tuning the full TRANAIR package continued throughout the project, given the limited availability
of machine resources, the decision was made to focus on solver development early on as a means to
demonstrate potential prior to a working implementation.

G.4. Motivation of Solver Development

From the experience of Boeing scientists and studies at Tera, it was evident that one area in which
multithreading could have a significant impact on TRANAIR was in the preconditioning of the lin-
earized problem within the GMRES solver phase. This includes both the generation of precondi-
tioners and their application. This area is representative of the critical sections seen in many finite-
element applications. The generation (incomplete LU factorization) and the application (solution of
triangular systems) of the preconditioners required by the GMRES solver are critical to perform-
ance. On large problems, these two sections alone consume at least 80 percent of the serial execu-
tion time.

The nonlinear discrete system arising from the finite-element approximation in TRANAIR is solved
using a preconditioned Krylov subspace method embedded in an inexact Newton Method. A
three-level hierarchical iterative process is used:

* an inexact Newton iteration process is used to solve the boundary value problem;

¢ a preconditioned Krylov subspace method is used to obtain an approximate solution of the
linear system arising in the Newton iterations;

¢ an incomplete sparse LU factorization is used to precondition the Krylov iterations.

While in theory TRANAIR contains abundant opportunities for parallelization, the Boeing data
structures and programming style make it difficult to express this parallelism without modifying
the code significantly. The ILU factorization, however, is viewed as a black box and hence is a
prime candidate for replacement. Requirements for such a replacement include significant per-
formance enhancement without degradation in solution accuracy and a demonstrated robustness
covering a large class of problems. Although three potential levels of granularity in a parallel im-
plementation of LU factorization were identified long ago (see, for example, [G-6]), the parallel
sparse factorization of irregular systems has always been considered challenging in practice, since
it requires the handling of indirect addressing and load balancing.

The Boeing implementation of the TRANAIR preconditioner is an incomplete LU factorization
(ILU) with geometry-based multilevel nested dissection ordering. It is inherently serial and pro-
vides only inner-loop parallelism. In addition, the implementation of the incomplete factorization is
not pure, in the sense that some updates are skipped in order to reduce communication between
block updates. Although this results in some reduction in quality, it simplifies data access.

Many different parallelization techniques have been developed to provide coarse-grain parallelism
for LU and ILU factorization on distributed- and shared-memory computers. Some examples are
the parallel version of geometric nested dissection [G-7] and parallel graph partitioning [G-9] com-
bined with the parallel maximum independent set approach [G-4], as in [G-8]. Multiple levels of
parallelism must be exploited to utilize all processors because the structure of the L and U factors
changes significantly over the course of the factorization due to fill-in. For sparse matrix factoriza-
tion, this requires the use of both coarse- and fine-grained parallelism.

Parallel approaches to multilevel nested dissection ordering schemes based on parallel graph par-
titioning are also well studied [G-9]. Typically, such algorithms are geared toward limiting com-
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munication costs while carefully maintaining load balance for distributed-memory architectures.
Geometric techniques partition regular grids efficiently, but are inefficient if a very fine-grained
partitioning of a multiply refined grid is required. Parallel multilevel graph partitioning is a com-
plicated procedure that includes coarsening, coarse-level partitioning, uncoarsening, and refine-
ment of the partitioning [G-9]. Partitioning is first used to distribute the work among several dis-
tributed-memory processors, and then the less-expensive Luby maximal independent set algorithm
is applied to treat the separators (see [G-8], Section 4).

The ability of the MTA to tolerate memory latencies permits the exclusive use of the inexpensive
Luby algorithm. Initial application of the expensive and complicated graph-partitioning phase is
not necessary.

G.5. ILU Factorization and Triangular Solver Modules

When a matrix is factored, the total number of operations for a given pivot is equal to that pivot's
row degree multiplied by its column degree. For sparse matrices, the number of operations for a
given pivot does not provide sufficient parallelism. Therefore, a set of independent pivots must be
chosen so that several pivot updates can be made concurrently.

To provide coarse-grain parallelism, a sequence of independent sets of pivots is constructed using a
modification of the randomized technique proposed by Luby [G-4]. Luby's algorithm was chosen
not only because it is highly parallel, but also because it tends to generate large independent sets in
a few iterations. An iteration of the algorithm consists of two steps: first, a random set of candi-
dates is constructed using an acceptance criterion for the nodes based on the number of connec-
tions; second, an independent set is extracted from these candidates. The application here requires
a large, but not maximal, independent set. Only a few Luby iterations are made.

The coarse-grain parallelism provided by Luby's algorithm is then combined with parallelism at
two other levels: pivots are factored concurrently, with each factor performing updates concur-
rently to rows below the pivot; and individual update or fill-in operations are performed in paral-
lel.

This parallelism is sufficient to saturate a multithreaded multiprocessor at all stages of factoriza-
tion: first, independent sets of pivots are large while the system is sparse; second, the number of
updates per pivot increases as the matrix becomes denser [G-3].

An LU factorization is considered incomplete when thresholding is used to reduce fill-in. If a loca-
tion in the factorization is already occupied by a non-zero element, the update is applied without
checking the threshold. If the location is currently unfilled, the update is checked against a relative
threshold, and the non-zero storage for that location is created only if the absolute value of the up-
date exceeds the threshold. This strikes a balance between conserving memory and retaining good
preconditioner quality. By modifying the threshold, total fill-in is usually constrained to between
two and four times the original number of non-zero elements; however if matrix quality is poor,
GMRES will require more iterations. Boeing's rule of thumb is that if GMRES does not converge in
30 to 60 iterations, the preconditioner (the Jacobian of the finite-element operator) will be recalcu-
lated and re-factorized.

As the row and column density increases and the factorizable population decreases, the Luby sets
become smaller, and it becomes more difficult and more expensive to find sets of independent piv-
ots. When the ratio of population to column density reaches a user-defined minimum value, the
solution switches to a minimum degree algorithm. Because of thresholding, the Luby independ-
ent-set algorithm can be used much longer than would be possible in a full LU decomposition.
Typically, 90 percent of the pivots can be applied before switching to minimum degree. In full LU,
the switchover occurs much sooner.

Besides exploiting multilevel parallelism in an adaptive fashion, the approach adopted provides a
mechanism for keeping fill-in low, while still maintaining a high-level of accuracy. The following
mechanisms are used for fill-in control. First, the acceptance probability of a candidate at the ran-
dom stage of the Luby algorithm is in inverse proportion to its degree. Second, a post-filtering
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stage is applied to remove a small number of nodes with high degree if they were included in the
independent set.

For initial testing of the factorization, a linked list storage format was used. Unfortunately, this
format inhibited access to the finest level of parallelism: individual updates to row elements as a
pivot column is eliminated. A consequence of thresholding is that row and column degrees do not
increase as much during the course of factorization as they would in a full LU decomposition. This
means that as the computation proceeds, the column density decreases while the number of inde-
pendent sets is also decreasing. It is therefore necessary that the matrix be stored in a form that
allows access to all three levels of parallelism.

Currently, a hash table to store non-zero elements is used in combination with block linked lists to
store corresponding row and column indices. This technique allows direct access to matrix ele-
ments, and all three levels of parallelism can then be exploited. This approach is very efficient in
achieving "fixed-size scalability" for factorization. Once the factorization is completed, the hash
table can be deallocated.

For the solution of triangular systems, an efficient dataflow approach has been developed that al-
lows two levels of parallelism to be exploited [G-3]. Coarse-grain concurrency can be achieved by
processing in parallel a large number of independent pivots, while fine-grain concurrency can be
achieved either through parallel sum reduction or by performing the updates in parallel. Using
Tera's lightweight synchronization, one can avoid the barriers typically present in most parallel
implementations of triangular solvers.

G.6. Performance

ILU Factorization. Several matrices were used to test and tune the Tera-developed ILU factoriza-
tion. The first matrix, provided by Dr. L. Wigton of Boeing, has 9%k rows and 133k non-zeros. This
matrix is considered difficult to factor with good quality. Four larger matrices, up to 139k rows
and 8.76M non-zeros, were generated using the Sun version of TRANAIR. These correspond to the
second through fifth grids in the B747 inviscid test problem.

Table G-1 contains timings for the sparse ILU factorization on the MTA and T90. The times in bold
correspond to those for which the MTA is faster than the T90 and show that 3 or 4 MTA processors
are comparable in speed to one T90 processor for the larger matrices. Also, for these matrices, 8
MTA processors are roughly twice as fast as a T90 processor.

Scaling on the MTA improves as the problem size increases, at least up to the two largest matrices,
which are comparable. Even for those matrices, though, the parallel efficiency falls off appreciably
with additional processors (to 60 percent at 8 processors), because the last part of the factorization
has relatively little parallel work.

For the B747I matrices, the inviscid problem formulation gives rise to initially denser matrices that
do not require a high-quality factorization (thus not needing fill-in that could create more parallel
work for latter-stage minimum degree factoring). MTA performance should improve on "harder”
problems, in which quality requires the matrices to be larger and sparser (because of adaptive re-
finement) resulting in more parallel work in the early stages. Likewise, more fill-in due to finer
thresholding will yield more parallel work in the later stages.

It is worth noting that ILU factorization is a difficult algorithm to implement on multiple proces-
sors, even though it is recognized as the best quality preconditioner for iterative solvers. Most
commercial codes do not even attempt a multiprocessor implementation of ILU factorization.

Also, Boeing’s TRANAIR programmers have been tuning the code on vector processors for at least
10 years. In that time they have not pursued a Cray multitasking strategy because of the difficulty
of doing so. Therefore, the Boeing algorithm does not scale at all on the T90. By contrast, the MTA
algorithm has been tuned for only several months, so there is still room for improvement.

Figure G-1 is a Traceview output from the B7471-3 test case on 8 MTA processors. It shows that
there is already considerable parallelism in an early grid for the 747 test case, even if full processor
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Table G-1. Performance results for ILU factorization on MTA and T90

Data set Threshold: | Fill-in: MTAlp { MTA2p | MTA4p | MTA8p | T90 1p
Rows / | MTA / MTA / time (s) | time(s) | time(s) | time(s) | time(s)
non-0s T90 T90
Wigton
9,106 / 1.E4 4.07 6.16 5.09 437 4.19
133,206
B7471-2
17,849 / 1E-3/ 1.29 / 16.80 10.59 8.46 7.55 5.22
953,190 1.E-3 1.11
B7471-3 '
58,536 / 1.E3/ 1.56 / 5457 33.31 22.32 17.03 25.87
3,405,266 1.E-3 1.62
B7471-4 *
115,209 / | 7.5E4 / 1.78 / 131.19 69.58 46.51 27.55 58.52
6,760,002 1.E-3 1.86
B7471-5 * :
138,589 / | 5.0E4 / 201/ 213.93 114.13 66.33 44.55 79.36
8,759,372 1.E-3 1.96

* The MTA threshold was dropped slightly to improve ILU quality and keep fill-in about the same

as on the T90.

Figure G-1. Traceview output

utilization is not achieved. Furthermore, it indicates that improvements in the compiler would al-
low even better performance on this problem.

Flow Solver. The flow solver, which incorporates the ILU factorization, has been implemented on

the MTA and used to run several of the NASA test cases (mentioned in Section G.3) to completion.
The larger test cases have been hindered by time requirements for the un-parallelized linear solves.
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Full integration of the Tera-developed ILU preconditioner should significantly speed up solver
times and allow testing of larger problems.

Currently 70 percent of all routines in the flow solver module are compiled with compiler-
generated parallelization enabled. Much of this parallelization, primarily loop-level parallelization,
is guided by Cray directives already present in the code. Most of the efforts so far have been di-
rected towards getting the NASA examples to run correctly to completion. With this almost com-
plete, tuning to take better advantage of the parallelization opportunities discussed in Section G.5

G.7. Conclusions

The TRANAIR port provided Tera a unique opportunity to test its architectural principles on a
large, complex, fluid dynamics code considered challenging for most computer architectures.

Development of a new algorithmic approach for incomplete LU factorization demonstrates how
multithreading on the MTA can be used to accelerate and scale a critical section in TRANAIR.
Timings for the ILU factorization applied to matrices generated from a Boeing 747 test case show
that 8 MTA processors are roughly twice as fast as a single T90 processor. While much work still
needs to be done to improve the overall performance of TRANAIR on the MTA, several NASA test
examples can be run to completion.

As a side effect of extracting parallelism in the ILU preconditioner, algorithms and data structures
were developed that allow on-the-fly matrix reordering based on data as well as connectivity. This
makes possible the development of robust, parallel partial pivoting strategies, which could lead to
better quality preconditioning in a wider variety of industrial applications. Such pivoting strate-
gies, impractical on other parallel architectures, are possible only because of the MTA's lightweight
synchronization and much lower memory latency.

An important aspect of this work was the feedback provided to system software developers. Al-
though this project was quite ambitious given the fragility of the MTA system at the beginning of
the evaluation period and the known difficulties in porting this code to architectures other than
Cray, persistence resulted in a software environment better able to handle the idiosyncrasies pre-
sented to it by legacy codes. In addition, the design and optimization of the parallel linear solver
has helped to verify and improve the major paradigms of Tera compiler technology, in particular,
the ability to exploit and schedule nested parallelism.
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Overview

Boeing researchers evaluated the industrial usability, scalability, and performance of Tera’s Multi-
threaded Architecture (MTA) computer for computationally intensive electromagnetics applica-

tions. Boeing’s evaluation was oriented towards an in-depth look at today’s applications, future
requirements, and the processes that must be supported by the computing environment of the fu-
ture. :

The applications evaluated on the Tera MTA were Boeing’s production-grade computational elec-
tromagnetics code called PARADYM and a kernel of the production code called the FMM Proto-
type. Based on the Method of Moments (MoM), the GMRES iterative method, and the multilevel
Fast Multipole Method (FMM), PARADYM is representative of the best numerical algorithms used
at Boeing for computationally intensive applications. Thus the evaluation of the performance and
scalability of PARADYM on the MTA is applicable to the analysis of Boeing’s future computing
requirements for defense applications. Also, PARADYM currently runs on both shared- and dis-
tributed-memory platforms. Thus the performance and scalability results on the MTA can be com-
pared to similar results on other architectures, such as the SGI Origin2000 (O2k) and clusters of
PCs.

PARADYM and the FMM Prototype were ported to and tuned on the MTA. The tuning effort in-
volved analysis and re-design of the implementation of the multilevel FMM to expose enough par-
allelism to exploit the multithreaded architecture. Once the tuning effort was completed, a scalable
set of test cases was used to carry out performance and scalability studies.

This report describes the effort required to tune the codes to the MTA, presents the performance
and scalabilty results, and gives an evaluation of the MTA with respect to of Boeing’s future com-
puting requirements for defense applications. A summary appears in the remainder of this section,
while details are presented in subsequent sections.

Porting Codes to the MTA. Relatively little effort was required to port the FMM Prototype to the
MTA. The problems encountered, which are typical of those in porting large applications to a new
computer, involved dynamic memory allocation from Fortran, calling C code from Fortran, binary
1/0, and differences in the specifications of the LOC and MALLOC functions between C and For-
tran.

These problems were resolved for the FMM Prototype except for the largest test cases (with 250,000
or more unknowns). Dynamic memory allocation problems prevented multiprocessor execution of
both the FMM Prototype for the largest test cases and the full PARADYM code for any of the test
cases.

Tuning Evaluation Codes for Performance on the MTA. Tera’s Fortran compiler, which supports
both Tera compiler directives and Cray compiler directives for “DO-loop” level parallelism, made
it easy to exploit coarse-grain parallelism in the evaluation codes. Moreover, Tera’s Canal and
Traceview tools were very useful in analyzing and tuning the evaluation codes for the MTA.

Some reprogramming of the FMM Prototype was necessary to achieve good performance and scal-
ability of the multilevel FMM. The tuning effort involved collapsing several nested DO loops to
obtain more threads.

Performance and Scalability of the MTA. Single-processor performance on the MTA was compa-

rable to that on the O2k for the FMM Prototype on a test case with 250,000 unknowns. The trend in
the data suggests that for full-vehicle radar cross-section simulations, where the number of un-
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knowns is 1,000,000 to 10,000,000, single-processor performance on the MTA will be roughly twice
that on the O2k.

The MTA does not scale the FMM Prototype as well as the O2k, however. For the test problem
with 65,000 unknowns, the parallel efficiency at 8 processors is about 0.9 on the O2k, but only 0.7
on the MTA.

Industrial Usability of the MTA. Boeing requires systems that have not only a high level of per-
formance, but also ones that are highly reliable and stable. The MTA installed at SDSC for this
project was a development machine with rapidly evolving hardware and software. Although the
resulting low availability and stability of the MTA made project work difficult, Tera did make great
strides during the course of the project to improve MTA reliability and stability.

Method of Moments

The MoM algorithm is a frequency-domain technique for computing electromagnetic scattering
from complex objects. The formulation of the MoM leads to a large, dense linear system of equa-
tions, which must be solved to compute the scattering. Traditionally, MoM algorithms have em-
ployed direct linear equation solvers for these systems. The high computational complexity of
these direct MoM solvers has limited them to low-frequency problems. Recently, fast MoM solvers
have been introduced with low computational complexity. These fast MoM solvers have the po-
tential to solve larger problems at higher frequencies. Boeing’s implementation of a fast MoM
solver was used as the basis for evaluation of the MTA.

The scattering of a plane wave of a specified frequency from an object is given by Maxwell’s equa-
tions. The Electric Field Integral Equation (EFIE) and the Magnetic Field Integral Equation (MFIE)
formulations describe the surface current density induced by an incoming plane wave.

The MoM approach to solving the EFIE or the MFIE is to discretize the integral equation by ex-
panding the current density in a set of N basis functions. Substituting this expansion into the inte-
gral equation, multiplying by a basis function, and integrating over the scattering surface reduces
the problem to one of solving a dense linear system of equations,

Zj=v,

for the vector j of expansion coefficients. The entries in the matrix Z and the vector v are compli-

cated double integrals over the scattering surface and must be calculated numerically.

The advantage of MoM algorithms is that they employ exact representations of Maxwell’s equa-
tions, so highly accurate simulations are possible. The disadvantage of traditional MoM algorithms
is that they are computationally intensive, especially as the frequency goes up. Generally N in-
creases as the square of the frequency, where N is on the order of 1,000,000 for full-vehicle simula-
tions.

In direct MoM solvers, which first appeared in the late 1960s, the linear system Z j = v is solved di-
rectly. The computational comglexity of direct MoM solvers includes O(N?) integral evaluations to
compute the matrix Z and O(N°) arithmetic operations to solve the system Z j=v forj. The mem-
ory requirement for direct MoM solvers is O(N?). For these reasons the direct MoM solvers are
generally used only for low-frequency problems. Although direct MoM solvers have been highly
optimized on various high-performance computers, including ones with shared and distributed
memory, the largest problems solved so far are for N on the order of 100,000.

Recently, fast MoM solvers based on fast, iterative linear equation solvers have been introduced.
The iterative solvers rely on numerically stable and rapidly converging iteration procedures, such
as the preconditioned GMRES method [H-1]. Fast matrix-vector multiply algorithms are used to
compute products of the form Z x used in the iterative procedure. The computational complexity of
the fast MoM solvers is O(NlogN). The memory requirement for the fast MoM algorithms is O(N).
This is a remarkable reduction from the O(N®) computational complexity of the direct MoM solvers
and allows the solution of much larger problems at higher frequencies. :




Rohklin [H-2, H-3] introduced fast MoM solvers for the Helmbholtz equation, which use iterative
linear equation solvers and the fast multipole method (FMM) for fast matrix-vector multiplies. To
compute products of the form Z x, the Z matrix is not formed or stored. Rather the product Z x is
viewed as a field and approximately evaluated by the FMM. The mathematical formulation of the
FMM is based on the theory of multipole expansions and involves translation (change of center) of
multipole expansions and spherical harmonic filtering.

Building on the FMM approach, Dembart, Epton, and Yip [H-4 to H-7] of Boeing implemented a
fast MoM solver in the production-grade electromagnetics code PARADYM used by the company
for radar cross-section studies. Problems for which the number of unknowns is on the order of
10,000,000 have been solved with this code. Boeing’s fast MoM solver uses the preconditioned
GMRES iterative method, which requires only the calculation of products of the form Z x, com-
bined with a multilevel FMM for fast matrix-vector multiplies.

Evaluation Codes

Two Boeing codes were used to evaluate the MTA for calculating electromagnetic scattering from
complex objects by the Method of Moments.

The first code is PARADYM, which is structured as shown in Table H-1. The code is composed of
four programs - G, F, S, and R - along with four supporting libraries — MSM, SINEX, ZFT, and
UTIL. The G, F, S, and R programs must be run in sequence to compute the scattering from an ob-
ject. The S program is the fast MoM solver, which uses the preconditioned GMRES iterative
method and the multilevel FMM for fast matrix-vector multiplies. As indicated in Table H-1, both
the G and the S programs and the UTIL library include Cray compiler directives for "DO-loop”
level parallelism.

Table H—l. Structure of PARADYM code

Module Function Parallel Implementation
G Generation of cube hierarchy and matri- | Parallel DO loops in three subroutines,
ces (including preconditioner) Cray directives
F Matrix factorization None
S Solution of dense linear system by pre- Parallel DO loops in one subroutine,
conditioned GMRES iteration using the Cray Directives
Fast Multipole Method for matrix-vector
multiplication
P Improved translation and filtering loops | Parallel DO loops in three subroutines,
Cray directives, performance tuning of
translation and filter loops
R Radar Cross-Section computation None
ZFT FFTs None
UTIL Dynamic memory management, cube Parallel DO loops in one subroutine,
hierarchy management, translation op- Cray directives
erators , .
SINEX | Surface grid operations None
MSM More memory management None

In previous Boeing
improved versions o
As in the S program,

level parallelism.
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work the P program was introduced. It replaces the S program and includes
f the translation and filter loops (described shortly) from the FMM Prototype.
the translation and filter loops include Cray compiler directives for "DO-loop”




The second evaluation code is the kernel of the fast MoM solver in the PARADYM code. Called the
FMM Prototype code, it computes the "far-field" due to a distribution of scalar sources by the mul-
tilevel FMM. The FMM Prototype consists of 29,000 lines of Fortran code. The "translation" loops
in subroutine EVL_TRNS and the "filter" loop in subroutine FMM_CFI are the key loops for coarse-
grain parallelism in the FMM. These subroutines have exact counterparts in the P program of
PARADYM. The translation and filter loops include Cray compiler directives for "DO-loop" level
parallelism. Performance results and tuning information obtained from the FMM Prototype code
can be directly transferred to PARADYM. The FMM Prototype has been extensively used at Boeing
to develop parallel implementations of the FMM for shared- and distributed-memory platforms
such as the SGI O2k and clusters of PCs.

Evaluation of Tera MTA

The first step was to establish a benchmarking environment for the evaluation codes and create a
set of scalable test problems for performance and scalability studies. The evaluation codes were
then ported to the MTA and tuned to the machine’s multithreaded architecture. Finally, perform-
ance and scalability studies were carried out to evaluate the performance of the evaluation codes
on the MTA. Also evaluated was the effort it took to tune the codes to the MTA to obtain good per-
formance. Details on the evaluation process and the results obtained follow.

Benchmark Environment. To facilitate the work a benchmark environment was established at
Boeing for the evaluation codes. The benchmark environment provided a set of scripts and make
files to maintain the source code, test data, and test results; to compile the source code; and to run
the test cases. Tera Computer Company provided Boeing the Fortran and C cross compilers for the
MTA and the Canal and Traceview development tools for use in the benchmark environment.

Throughout the project, the PARADYM code was secured in the benchmark environment at Boe-
ing. The Fortran and C cross compilers were used to build MTA executables for PARADYM at
Boeing. Secure communications (SCP) were then used to transfer the executables to SDSC for test-
ing on the MTA. This procedure was followed to meet the proprietary and security requirements
specified by Boeing and Boeing’s customers.

For the FMM Prototype only, a similar benchmark environment was also established at SDSC. This
provided a convenient environment for working with the FMM Prototype at SDSC.

Benchmark Test Cases. A scalable set of benchmark test cases was developed to conduct perform-
ance and scalability studies on the MTA. The "flat-plate" series for PARADYM and the FMM pro-
totype were designed to increase geometrically the number of unknowns in the dense linear system
of equations presented to the FMM solver in PARADYM.

The flat-plate test cases for the FMM prototype are summarized in Table H-2. The frequency,
wavelength, and cube hierarchy are specified for each test case. In the rows for each level, the first
number in the column for a test case specifies the number of cubes for the level, and the second
number specifies the order of the multipole expansions for the level. The table also shows the
number of sources (which is approximately the number of unknowns in PARADYM) and the
memory for signature function storage.

Porting Evaluation Codes to Tera MTA. The FMM Prototype code was first ported to the MTA.
Relatively little effort was needed for this, though two problems were identified with dynamic
memory allocation and inlining a logic function. Once these problems were resolved, the code was
verified to produce correct results on the MTA. (The two compiler problems mentioned above
were corrected in later versions of the compiler.)

Tera compiler directives were then used to achieve "DO-loop" parallelism in the translation and
filter loops. Correctness of the parallel code when compiled with the —par option was verified for
the 2x2, 4x4, 8x8, and 16x16 test cases. When the compiler was updated to handle Cray compiler
directives properly, the Tera directives were replaced by Cray directives, and correctness was again
verified. This allowed PARADYM, which uses Cray compiler directives for "DO-loop" parallelism,
to be ported to the MTA with minimal changes. It also meant that performance and scalability data
for the FMM Prototype could be used to predict the performance of the P program in PARADYM.
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Table H-2. Flat-plate test cases for FMM prototype

Test case 2x2 4x4 8x8 16x16- 32x32 64x64
Frequency (GHz) 0.6 1.2 2.4 438 9.6 19.2
Wavelength (m) 0.5 0.25 0.125 0.0625 0.03125 0.015625
Level-6 16 256
Level-5 16 128 | 49 128
Level-4 16 64 49 64 [ 196 64
Level-3 16 36 49 36 196 36 | 729 36
Level-2 16 20 49 20 196 20 729 20 2916 20
Level-1 16 12 49 12 196 12 729 12 2916 12 1144912
Level-0 49 6 196 6 729 6 2916 6 11449 6 | 40000 6
Sources 1,024 4,096 16,384 65,536 262,144 1,048,576
Memory (MB) 3.2 11.2 428 162 646

All of the performance data reported here are for the version of the FMM Prototype that uses Cray
directives.

Once the port of the FMM Prototype to the MTA was complete, attention shifted to porting the full
PARADYM code to the MTA. Some preliminary modifications to the G and S programs and the
UTIL library were made to coordinate with the benchmark environment. Also, the translation and
filter loops from the FMM Prototype, which use the Cray compiler directives for "DO-loop” paral-
lelism, were added to the P module. The modified code was verified to produce correct results on
an SGI O2k at Boeing. Working in the benchmark environment at Boeing, the G, F, S, R, and P
modules as well as the MSM, SINEX, ZFT, and UTIL libraries were then verified to compile cor-
rectly with Tera’s Fortran compiler.

After this preliminary work, testing of the PARADYM executable began on the MTA at SDSC fol-

lowing the plan shown in Table H-3.

Table H-3. Test plan for porting and evaluating PARADYM codé

Test Plan Objective Status
1 | TestG, F, S, Rmodules and Validate correct execution of Validation complete
MSM, SINEX, ZFT, UTIL li- PARADYM on MTA
braries for -serial
2 | TestG,S modules and UTIL Evaluate parallel performance | Validation complete;
library with Cray directives on MTA with no changes to performance study in-
for -par code complete
3 | Test P module with Cray Evaluate parallel performance | Validation complete;
directives for -par on MTA using basic translation | performance study in-
' and filtering loops from FMM | complete
Prototype
4 | Test P module with perform- | Evaluate parallel performance | Validation and per-
ance tuning from FMM Pro- | on MTA using tuned transla- formance study not
totype tion and filtering loops from done '
FMM Prototype
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Work began on Test 1 first, in which the code was compiled with the —serial option and checked for
correct execution. Several porting problems were identified, involving dynamic memory allocation
from Fortran, calling C code from Fortran, binary I/0O, and differences in the specifications of the
LOC and MALLOC functions between C and Fortran. These problems were resolved, and correct
serial execution was validated on the MTA, resulting in successful completion of Test 1.

Work then proceeded to Test 2, where the G and S programs and the UTIL library were compiled
with the -par option and checked for correct execution. The significance of this test is that the G
and S programs and the UTIL library include Cray directives for "DO-loop" parallelism. Correct
execution of this multithreaded version of PARADYM was validated on one MTA processor. This
is an important result because it shows that the shared-memory parallel version of PARADYM
runs on the MTA with only the few porting changes mentioned previously. However, due to
problems with dynamic memory, correct execution was not achieved on multiple MTA processors.
As aresult, the performance and scalability studies planned for Test 2 could not be conducted.

Next Test 3 was conducted, in which the P module was compiled with the —par option and checked
for correct execution. The importance of this test is that it uses the parallel translation and filter
loops from the FMM Prototype, which include Cray directives for "DO-loop" parallelism. Again,
correct execution of this multithreaded version of PARADYM was achieved on one MTA proces-
sor. As before, however, problems with dynamic memory prevented correct execution on multiple
MTA processors. As a result, the performance and scalability studies planned for Test 3 could not
be conducted.

Insufficient time remained to conduct Test 4, in which the parallel translation and filter loops in the
P module were to be updated to reflect the tuning results from the FMM Prototype.

Tuning Evaluation Codes for Tera MTA. As mentioned previously, Cray compiler directives were

used to achieve "DO-loop" parallelism in the translation and filter loops. The performance and

scalability of the FMM Prototype with this approach to parallelism were found to be limited, evi-

dently because of variation in the granularity of the multilevel FMM over the levels of the cube hi-
erarchy. :

In particular, the number of cubes at each level decreases geometrically from the finest to the coars-
est level, whereas the order of the multipole expansions increases geometrically from the finest to
the coarsest level. As a result, the amount of computational work is roughly constant over the lev-
els, but the amount of parallelism, exploited in the parallel DO loops over cubes, decreases from the
finest to the coarsest level. Consequently, the performance and scalability of the approach are lim-
ited on the MTA, as verified by Tera's Traceview tool. This is especiaily true for the filter loop
where FFTs are invoked from within the loop. '

Tera’s Canal and Traceview tools were used to identify additional parallel opportunities beyond
the "DO-loop" parallelism in the translation and filter loops. Three approaches were considered for
 tuning the translation and filter loops: two taking advantage of fine-grain parallelism within the
loops and the third using "futures" to pipeline the FMM calculation for additional parallelism.

In the first approach, several of the subroutines called from within the loops were compiled with
parallel compiler directives. For the translation loops, -par parallelism was applied to the point-
wise multiplication of signature functions by translation operators. For the filter loops, -par1 par-
allelism was applied to the FFTs used in the filtering operations. Since the translation and filter
loops are compiled with the —par compiler directive to invoke "DO-loop” parallelism, this strategy
amounted to placing parallel regions within parallel regions. This failed to generate additional
parallel performance. In fact, the overhead of initiating a parallel region from within a parallel re-
gion actually degraded performance.

The second approach was applied to the filter loop. The code loops over all cubes at a given level
in the cube hierarchy and performs a sequence of "multiple” FFTs, on columns and rows of each
cube, to accomplish the filter operation. For a multiple FFT on columns, the FFT code treats the
cube data as row-wise vectors, and the transform operations are composed as loops over the row-
wise vectors. The multiple FFT on row is similar. The code was modified to loop over all cubes
and all columns (or rows) of the cube and perform "single" FFTs one column (or row) at a time.
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The length of the modified loop is the product of the number of cubes by the number of columns
(or rows). For a given number of levels in the cube hierarchy, the length of the modified loop is
approximately the same over all levels in the multilevel FMM. For problems with four levels
(16,000 or more unknowns), the length of the modified loop is large enough to obtain high parallel
performance from "DO-loop" level parallelism. The parallel performance of the modified loop also
showed good scalability.

The third approach used an MTA-specific feature called futures to pipeline the FMM calculation for
additional parallelism. Futures allow all the translation and filter loops to run in parallel, while the
loops themselves execute as parallel DO loops. The futures are synchronized by using the
full/empty bit of the MTA. Data for an individual cube are used (consumed) by a translation or
filter loop as soon as they are computed (produced) by other loops. Synchronization by testing the
full/empty bit is a lightweight process on the MTA, so this producer/consumer approach should
be efficient and scalable.

As it turned out, this approach did not lead to improved parallel performance on the MTA. The
reason is that the MTA operating system assigns streams to futures in a static manner. When all
parallel translation and filter loops were initiated at once using futures, the system could not assign
enough streams to all of the loops. Some loops ran with very few streams and so ran very slowly.
Indeed, the futures version of the FMM prototype ran slower than the standard version. Although
this result is disappointing, it is possible that a more sophisticated strategy for initiating the loops
might lead to improved parallel performance. Also, a future version of the MTA operating system
is expected to support dynamic allocation of streams to futures.

Performance and Scalability Results. Throughout the project, the flat-plate test cases were used to
measure the performance and scalability of the FMM Prototype on the MTA. These measurements,
along with Tera’s Canal and Traceview tools, also guided the tuning efforts. The lack of stability of
the MTA made it very difficult to obtain reliable and reproducible performance data. The perform-
ance and scalability data presented here represent the best results obtained.

Table H-4 compares performance data for the FMM Prototype on the Tera MTA (at 260 MHz) and
the SGI O2k (at 250 MHz). The numbers for each test case are wall-clock times in seconds meas-
ured during dedicated time slots on each machine. The data for the O2k were obtained with an
MPI parallel version of the FMM Prototype. The data for the MTA were obtained with the tuned
version of the FMM Prototype using the second approach described previously. Due to problems
with dynamic memory, multiprocessor runs were not completed on the MTA for the 32x32 test
case.

Table H-4. Performance data for FMM Prototype on Tera MTA and SGI O2k

N 2x2* 4x4* 8x8* 16x16* 32x32*
02k | MTA | O2k | MTA | O2k | MTA | O2k | MTA | O2k | MTA

1 262 | 643 | 156 | 3.01 | 907 | 144 | 533 | 643 | 404. | 383.

2 74 | 502 | 826 | 1.65 | 468 | 7.16 | 26.7 | 350 | 189.

4 A33 | 475 | 464 | 1.09 | 234 | 403 | 137 | 19.2 | 104

8 220 | 468 | 307 | .828 | 125 | 271 | 734 | 116 | 49.1

16 | .205 307 918 4.17 30.5

* The tabulated numbers are wall-clock times in seconds.

Single-processor times on each machine are plotted versus the problem size in Figure H-1. The plot
and the tabulated data show that the single-processor performance of the MTA just exceeds that of
the O2k for the 32x32 test case with 250,000 unknowns. The trend in the data suggests that for full-
vehicle simulations, where the number of unknowns is 1,000,000 to 10,000,000 (corresponding to
test cases of 64x64 and larger), the single-processor speed of the MTA will be approximately twice
that of the O2k. ‘
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Figure H-1. Single-processor performance of FMM Prototype on Tera MTA and SGI 02k

Figures H-2 and H-3 show scalability on the MTA and O2k, respectively, for the various test cases.
Scalability is appreciably better on the O2k. This is best seen by a direct comparison between the
two machines, such as shown in Figure H-4 for the 16x16 test case, the largest for which there are
data on both the MTA and O2k. Plotted there is the parallel efficiency (speedup divided by the
number of processors) versus the number of processors (where ideal, linear scalability corresponds
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Figure H-2. Performance data for FMM Prototype on Tera MTA (260 MHz)
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Figure H-3. Performance data for FMM Prototype on SGI O2k (250 MHz)

H-8




1 —_
-3
o .
£ 0.8 -
~
£ 06 " MTA
3 0.4 —m— 02K
5
s 0.2
[+
0 T T T T T

1 2 4 8 16 32
Number of Processors

Figure H-4. Parallel efficiency for 16x16 test case on Tera MTA and SGI O2k

to a parallel efficiency of 1.0). The figure shows that at 8 processors, the parallel efficiency of the
O2k is about 0.9, while the parallel efficiency of the MTA has fallen to about 0.7.
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Symbiosis

Allan Snavely, Nick Mitchell, Larry Carter, Jeanne Ferrante, and Dean Tullsen
San Diego Supercomputer Center &
Computer Science and Engineering Department
University of California, San Diego

Symbiosis is defined as the mutually beneficial living together of two dissimilar organisms in close
proximity. The term has been adopted to refer to the increase in throughput that can occur when
two or more jobs are executed concurrently on a multithreaded computer. Work reported here has
led to

— aformal definition of symbiosis in the context of multithreaded architectures,

~  aseries of empirical observations of the symbiotic effect on the Tera MTA, and

— development of a symbiotic job scheduler that increases throughput on a multithreaded
computer.

This work is summarized here and described in more detail in Ref [I-1].

Formal Definitions

Consider a set of J jobs, each of which takes time t; to execute by itself. Then the normalized

throughput of running the jobs simultaneously instead of sequentially (i.e., one after another) is
defined to be

TR = sequential time / simultaneous time
= (sumtj for j=1,]) / simultaneous time.

If TR is greater than 1, then there is an advantage to running the jobs simultaneously rather than
sequentially. If TR is less than 1, the jobs interfere with each other, and it is better to wait for one
to complete before running the next.

The best possible value for the normalized throughput is

™ = (sumt]- forj=1J) / (max t for j=1]).

This could be obtained if all of the jobs run in the same time as the longest job running alone. While
this might seem very unlikely to those who are familiar with traditional timeshared machines, it is
possible for a multithreaded machine to devote the unused resources of one job to other jobs and
thus complete all the jobs in the same time as one running alone.

With these preliminaries, symbiosis is defined as
Symbiosis = (TR-1) / (TM - 1).

This gives a positive value of at most 1 if throughput is increased by running the jobs simultane-
ously and gives a zero or negative value otherwise.

Empirical Observations

To quantify the effect of symbiosis on a multithreaded architecture, the five NPB 2.3-serial kernels
were run as simultaneous jobs for each of 15 pairings (including self pairings) on the Tera MTA.
These are the same kernels used in the previously described case study, except that their size was
Class W, which is smaller than the Class A and B sizes considered before.




Figure I-1 shows the results of running all 15 pairs of tuned kernels on a single MTA processor. In
most cases the symbiosis is positive and sizable. In other words, the MTA is able to devote re-
sources, such as streams, that are unused by one job to another, thus increasing throughput.

Figure I-1. Symbiosis of tuned NPB 2.3-serial kernels on a single MTA processor
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Figure I-2. Symbiosis of tuned "long-run" NPB 2.3-serial kernels on a single MTA processor

Much of the postivie symbiosis observed is due to overlap of serial sections in one job with parallel
(or serial) sections of the other job. Even though all five kernels have well-tuned parallel sections
that are timed in the usual benchmark tests, there are substantial serial sections associated with in-
put/output and initialization that are not normally timed. These serial sections are included in the
throughput analysis here and lead to positive symbiosis. Thus the tests corresponding to the re-
sults in Figure I-1 are not necessarily representative of the more demanding and typical case in
which applications with relatively short serial sections run simultaneously.

To simulate the more demanding case, the five kernels were modified to have parallel sections that
run longer, which made the serial sections proportionately smaller. Figure I-2 shows the results of

running all 15 pairs of these "long-run” kernels. The benefits of symbiosis are much reduced, but
still positive on balance.

Symbiotic Job Scheduling

Symbiosis can be enhanced by appropriately scheduling jobs. The tests reported here have already
resulted in improvements to the current MTA job scheduler.

Most of the cases of negative symbiosis seen in the reported tests were due to a lack of dynamic
resource allocation in the operating system. If two jobs started at the same time, one might grab a
lot of streams. The second one would get whatever streams were left over. If the first job subse-
quently released its streams, the second job would not be notified of this and would proceed with
fewer streams than were available. This "stream throttling" was brought to the attention of Tera
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staff who came up with several dynamic resource allocation features in the current operating sys-

tem. These, to a large degree, have eliminated cases of negative symbiosis on the MTA.
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